ACADEMIC PLANNER & UNITIZATION OF SYLLABUS, 2024 (EVEN SEMESTER)

2nd SEMESTER B.Sc, PAPER – 2, Probability and Distributions) (56 Hours, 4 Hours of Theory per week)

Month & Year	Session Number	Portions planned for one Hour	Remarks
MARCH-	1	Theoretical discrete vs Continuous distributions	NVP
2024			
	2	Bernoulli distribution – Definition through pmf, E(X) and V(X)	NVP
	3	Unit –1 : Probability	RP
	4	Random experiment, sample space and events, algebra of	RP
		events.	
APRIL-	5	Binomial distribution – Definition through pmf, $E(X)$ and $V(X)$	NVP
2024			
	6	Binomial distribution – MGF, Recurrence relation, Moments	NVP
	7	Definitions of Probability- Classical, statistical, subjective and	RP
		axiomatic approaches – illustrations and applications,	
	8	Definitions of Probability- Classical, statistical, subjective and	RP
		axiomatic approaches – illustrations and applications,	
	9	Additive property of Binomial distribution	NVP
	10	β_1 and β_2 of Binomial distribution	NVP
	11	Definitions of Probability- Classical, statistical, subjective and	RP
		axiomatic approaches – illustrations and applications,	
	12	Addition rule	RP
	13	Poisson distribution – Definition through pmf, E(X) and V(X)	NVP
	14	Poisson distribution – MGF, derivation of moments from MGF	NVP
	15	Conditional probability, independence of events and	RP
		multiplication rule,	
	16	Conditional probability, independence of events and	RP
		multiplication rule,	
	17	Recurrence relations for moments of Poisson distribution	NVP
	18	Additive property of Poisson distribution	NVP
	19	Conditional probability, independence of events and	RP

		multiplication rule,	
	20	Total probability rule	RP
MAY-2024	21	β_1 and β_2 of Poisson distribution	NVP
-	22	Geometric Distribution, pmf, Mean, Variacne, MGF, Dist Function	NVP
	23	Bayes theorem- applications	RP
	24	Unit –2: Random Variables And Mathematical Expectation - (One Dimension)	RP
	25	Uniform Distribution, pmf, Mean, Variacne, MGF, Dist Function	NVP
	26	Gamma distribution of 1 st kind – Mean, Variance, r th moment	NVP
	27	Definitions of discrete and continuous random variables,	RP
	28	Distribution function,	RP
	29	Gamma distribution of 2 nd kind – Mean, Variance, r th moment	NVP
	30	Limiting property of Gamma distribution	NVP
	31	probability mass and density functions – properties and illustrations,	RP
	32	DO	RP
JUNE- 2024	33	Beta distribution of 1 st kind – Mean, Variance, HM	NVP
	34	Beta distribution of 2 nd kind – Mean, Variance, HM	NVP
	35	Expectation of a random variable and rules of expectation and related results,	RP
	36	Expectation of a random variable and rules of expectation and related results,	RP
	37	Exponential distribution with parameter θ , Mean, Variance, MGF, r th moment	NVP
	38	Exponential distribution with parameter $\frac{1}{\theta}$, Mean, Variance, MGF, r th moment	NVP
	40	Expectation of a random variable and rules of expectation and related results,	RP
	41	Probability generating function,	RP
	42	Normal distribution, definition, Mean, Variance, MGF	NVP
	43	Normal distribution, derivation of Median, Mode, MD from Mean, Symmetric about Mean	NVP
	44	Moments and moment generating function	RP
	45	Moments and moment generating function – properties and uses.	RP

	46	Linear combination of n independent Normal random variables	NVP
	47	Standard Normal variate, Mean, Variance and MGF	NVP
	48	Moments and moment generating function – properties and uses.	RP
	49	Moments and moment generating function – properties and uses.	RP
JULY -	50	Introduction to R software, Installation and other related	NVP
2024		issues	
	51	R as calculator, Basic Mathematical operations	NVP
	52	Revision	RP
	53	Discussion of previous year's question papers	RP
	54	Evaluation of simple expressions, Hierarchy of operators	NVP
	55	Standard Mathematical and Statistical functions with syntax	NVP
	56	Revision	RP
	57	Discussion of previous year's question papers	RP
	58	Creation of vectors using different operators (c, seq, : ,)	NVP
	59	Calculation various statistical measures Central tendency and Dispersion	NVP
	60	Revision	RP
	61	Discussion of previous year's question papers	RP
	62	Introduction to plotting function in R, Different parameters, syntax involved in plotting function in R	NVP
	63	Bar plot, Pie chart, Histogram, Box plot, Histogram etc	NVP

PRAVEEN N V Assistant Professor R PRAKASH HOD PRINCIPAL

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS, 2024 (EVEN SEMESTER)

4th SEMESTER B.Sc, PAPER – 4 (Statistical Inference - I) (56 Hours, 2 Hours of Theory per week)

Month & Year	Session Number	Portions planned for one Hour	Remarks
MARCH- 2024	1	Family of distributions, Introduction, definitions	
	2	Location and Scale families of distributions	
	3	UNIT- 3: Testing of Hypotheses- Introduction	
	4	Statistical hypotheses - null and alternative,	
APRIL- 2024	5	Single parameter exponential family (Definition, Introduction)	
	6	Single parameter exponential family (Problems)	
	7	Simple and composite hypotheses. Type-I and Type-II errors	
	8	Unbiased estimation (Definition and Introduction)	
	9	Unbiased estimation, examples and problems	
	10	Finding unbiased estimators for given PMF/PDF	
	11	test functions. Randomized and non-randomized tests.	
	12	Size, level of significance, Power function, power of tests.	
	13	Consistency (definition and examples)	
	14	Invariance property of consistent estimators, problems	
	15	Critical region, p- value and its interpretation	
	16	Most Powerful (MP) and UMP test.	
	17	Efficiency and relative efficiency. Mean squared error	
	18	Mean squared error for comparison of estimators	
	19	Statement of Neyman-Pearson Lemma and its applications.	
	20	Statement of Neyman-Pearson Lemma and its applications.	
MAY-2024	21	Sufficient statistics, Definition and Introduction	
	22	Neyman Factorization criterion, Problems	
	23	Statement of Neyman-Pearson Lemma and its applications.	
	24	Statement of Neyman-Pearson Lemma and its applications.	
	25	Fisher's Information function, its significance	

	26	Crammer – Rao Inequality and its applications	
	27	Statement of Neyman-Pearson Lemma and its applications.	
	28	Minimum Variance Unbiased Estimator (MVUE)	
	29	Problems based on MVUE	
	30	Large and small samples tests of significance. Tests for	
		single mean,	
	31	Tests for single mean, equality of two means,	
	32	Minimum Variance Bound Estimator (MVBE)	
	33	Problems based on MVBE	
	34	Tests for equality of two means,	
	35	Test of equality of two variances for normal populations.	
	36	Maximum Likelihood Estimation (MLE)	
JUNE-	37	Properties of MLE and Computation of MLE	
2024			
	38	Tests for proportions.	
	39	Tests for proportions.	
	40	Moment estimators	
	41	Construction of Moment estimators	
	42	UNIT- 4: Interval Estimation	
	43	Confidence interval, confidence coefficient, shortest	
		confidence interval.	
	44	Computation of MLE	
	45	Moment estimation, concept, uses examples	
	46	Methods of constructing confidence intervals using pivotal	
		quantities.	
	47	Methods of constructing confidence intervals using pivotal	
		quantities.	
	48	Moment estimators - problems	
	49	Moment estimators - problems	
	50	Construction of confidence intervals for mean,	
	51	Construction of confidence intervals for difference of two	
		means,	
	52	Revision of previous year question papers	
JULY-2024	53	Revision of previous year question papers	

54	Construction of confidence intervals for variance	
55	Construction of confidence intervals ratio of variances,	
56	Revision of previous year question papers	
57	Revision of previous year question papers	
58	Construction of confidence intervals for proportions, difference of two proportions	
59	Construction of confidence intervals for correlation coefficient.	
60	Mock test	

PRAVEEN N V Assistant Professor R PRAKASH HOD PRINCIPAL

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS, 2024 (EVEN SEMESTER)

6th SEMESTER, PAPER – 7 (STAC11-T – Analysis of variance and Design of experiments (Theory))

(60 Hours, 4 Credits, Theory : 4 Hours/week, Lab : 4 Hours/Week/Batch, FAM*: 40, SAM**: 60, Duration of SEA exams : 2 Hours 30 Minutes)

Month & Year	Session Number	Portions planned for one Hour	Remarks
APRIL-	1	Unit 1-ANOVA : meaning & assumptions.	RP
2024			
	2	models	RP
	3	One way ANOVA- basics, model etc.	RP
	4	Analysis- estn. Of parameters	RP
	5	Sum of Squares, MSS, F cal etc	RP
	6	Expectation of trss and ESS	RP
	7	Two-way ANOVA—basics, assumptions	RP
	8	Expectation of trss, BSS	RP
	9	Expectation of ESS,.	RP
	10	Two-way ANOVA Multiple obs/cell—basics, assumptions	RP
	11	Expectation of trss, BSS	RP
	12	Expectation of ESS,.	RP
	13	Tukey method etc	RP
	14	UNIT 2: EXPERIMENTAL DESIGNS	RP
	15	Principles of design of experiments.	RP
	16	Principles of design of experiments	RP
MAY- 2024	17	Principles of design of experiments	RP
	18	CRD- basics , model and analysis	RP
	19	CRD analysis continue	RP
	20	RBD design: basics, model, analysis	RP
	21	RBD analysis continuation	RP
	22	LSD design: basics, model etc	RP
	23	LSD analysis continuation	RP

	24	LSD analysis continuation	RP
	25	LSD analysis completion- anova table, inference etc	RP
	26	Estimation of a missing observation in RBD and its analysis.	RP
	27	Estimation of a missing observation in LSD and its analysis.	RP
	28	DO	RP
	29	Introduction to incomplete block designs, BIBD and its	RP
		analysis, Yuden square designs,	
	30	analysis. Yuden square designs	RP
	31	Introduction to incomplete block designs, BIBD and its	RP
		analysis, Yuden square designs,	
	32	Introduction to incomplete block designs, BIBD and its	RP
	00	analysis, Yuden square designs,	DD
JUNE	33	Factorial experiments—basic concepts	RP
2024			
	34	Basic concepts – main and interaction effects,	RP
	35	Basic concepts – main and interaction effects, and orthogonal	RP
	•••	contrasts in 2^2 factorial experiments.	
	36	Yates' method of computing factorial effects total.	RP
	37	Basic concepts – main and interaction effects, and orthogonal	RP
		contrasts in 2 ³ factorial experiments.	
	38	Yates' method of computing factorial effects total.	RP
	39	do	RP
	40	Basic concepts – main and interaction effects, and orthogonal	RP
	11	Contrasts in 2 ⁻ and 2 ⁻ factorial experiments.	DD
	41		ЛГ
	42	do	RP
	43	Analysis of 2 ² and 2 ³ factorial experiments in RBD, Need for	RP
		confounding.	
	11	Turpes of confounding Complete and partial	DD
	44		ЛГ
	45	Confounding in a 2° - factorial experiment in RBD and its	RP
	46	Types of confounding - Complete Confounding in a 2 ³ -	RP
	10	factorial experiment in RBD and its analysis	
	47	do	RP
	48	Partial Confounding in a 2 ³ - factorial experiment in RBD and	RP
		its analysis	
	49	do	RP
JULY-2024	50	Revision of question papers	RP
	51	Revision of question papers	RP

52	Revision of question papers	RP
53	Revision of question papers	RP
54	Revision of question papers	RP
55	Revision of question papers	RP

* FAM : Formative Assessment Marks

** SAM : Summative Assessment Marks

R PRAKASH

VIJAYA COLLEGE, R V ROAD, BANGALORE – 560 004 <u>DEAPARTMENT OF STATISTICS</u>

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS, 2024 (EVEN SEMESTER)

6th SEMESTER, PAPER – 8 (STAC16T – Applied Statistics) (60 Hours, 4 Credits, Theory : 4 Hours/week, Lab : 4 Hours/Week/Batch, FAM*: 40, SAM**: 60, Duration of SEA exams : 2 Hours 30 Minutes)

Month & Year	Session Number	Portions planned for one Hour	Remarks
APRIL-	1	Introduction to OR, Various Definitions	NVP
2024			
	2	Linear Programming Problem, Introduction	NVP
	3	Formulation of LPP	NVP
	4	Unit 4: Demography (Vital Statistics)	RP
	5	Graphical method of solving LPP	NVP
	6	Special cases	NVP
	7	Special cases continued	NVP
	8	Sources of demographic data.	RP
	9	Canonical and Standard forms of LPP	NVP
	10	Basic, Basic Feasible, Non degenerate solution.	NVP

	11	Simplex Method – Applicability	NVP
	12	Measurement of Mortality: crude, specific death rates.	RP
	13	Simplex Algorithm	NVP
	14	Simplex Algorithm (Unique/Multiple/Unbounded/Infeasible)	NVP
	15	Big M Method	NVP
	16	Measurement of Mortality: standardized death rates. Infant	RP
		mortality rate, maternal mortality rate.	
MAY-2024	17	Big M Method continued	NVP
	18	Duality in LPP	NVP
	19	Writing the Dual when Primal is given (special cases)	NVP
	20	Measurement of fertility: crude, age specific, general, and	RP
		total fertility rates.	
	21	Transportation problem (TP), Definition, as an LPP	NVP
	22	IBFS (NWCR,VAM)	NVP
	23	Assignment Problem (AP) Definition, as an LPP	NVP
	24	Measurement of fertility: crude, age specific, general, and	RP
		total fertility rates.	
	25	Complete Enumeration vs Hungarian Method	NVP
	26	Game theory, Introduction, Definitions	NVP
	27	Minimax – Maximin Principle - problems	NVP
	28	Reproduction rates,	RP
	29	Dominance Rule - problems	NVP
	30	Mixed Strategy problem, 2 × 2 problem (Without saddle point)	NVP
	31	Graphical method 2 × n problem	NVP
	32	Reproduction rates contd.	RP
JUNE-	33	Graphical method m × 2 problem	NVP
2024			
	34	Index number, Introduction and types	NVP
	35	Steps involved in the construction of Index numbers	NVP
	36	Life table: Components of a life table,	RP
	37	Price and quantity index numbers (various types)	NVP
	38	Construction of price and quantity index numbers by various methods	NVP
	39	Time Reversal Test (TRT)	NVP
	40	Life table: force of morality and expectation of life	RP

	41	Factor Reversal Test (FRT)	NVP
	42	Consumer Price Index numbers	NVP
	43	Steps involved in the construction of Price Index numbers	NVP
	44	Construction of a life table. Uses of a life table.	RP
	45	Family Budget method and Aggregative expenditure method	NVP
	46	Uses and Limitations of CPIN	NVP
	47	Introduction to Time series	NVP
	48	Construction of a life table.	RP
JULY-2024	49	Components of Time series	NVP
	50	Method of Moving averages	NVP
	51	Method of Least squares (Linear trend equation)	NVP
	52	Uses of a life table.	RP
	53	Method of Least squares (Second degree trend equation)	NVP
	54	Method of Least squares (Exponential trend equation)	NVP
	55	Seasonal Indices : Definition and uses	NVP
	56	Revision	RP
	57	Different methods of constructing Seasonal Indices, Interpretation	NVP
	58	Seasonal Indices by Method of Simple averages	NVP
	59	Seasonal Indices by Ratio to moving averages	NVP
	60	Revision	RP
	61	Discussion of previous year's question papers	NVP
	62	Discussion of previous year's question papers	NVP

* FAM : Formative Assessment Marks

** SAM : Summative Assessment Marks

PRAVEEN N V

R PRAKASH

Assistant Professor, Department of Statistics, Vijaya College, R V Road, Bangalore – 560 004

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS, 2024 (EVEN SEMESTER)

2nd SEMESTER B.Com, DA 2.2 – Business Statistics - 2 (56 Hours, 4 Hours of Theory per week)

Month & Year	Session Number	Portions planned for one Hour	Faculty
	1	Linear Regression Analysis (Introduction)	NVP
	2	Regression Equations (y on x and x on y)	NVP
	3	Regression Lines (Graph of Regression equations)	NVP
	4	Testing of Hypothesis, Basics, Need, Definitions	RP
	5	Problems on Regression lines and estimation	NVP
	6	Problems on Regression lines and estimation	NVP
	7	Problems on Regression lines and estimation	NVP
	8	Test for single mean (known population variance)	RP
	9	Time Series Analysis – Introduction	NVP
	10	Components of Time series, definition with examples	NVP
	11	Uses and Applications of time series	NVP
	12	Test for single mean (unknown population variance)	RP
	13	Trend by Free hand Method	NVP
	14	Method of Semi averages	NVP
	15	Method of Moving averages (n is odd)	NVP
	16	Test for difference or equality of two means (Large samples)	RP
	17	Method of Moving averages (n is even)	NVP
	18	Method of Least squares (Straight Line) – n is odd	NVP
	19	Method of Least squares (Straight Line) – n is even	NVP
	20	Test for difference or equality of two means (Small samples)	RP
	21	Method of Least squares (Parabolic trend) – n is odd	NVP
	22	Method of Least squares (Parabolic trend) – n is even	NVP
	23	Method of Least squares (Exponential trend) – n is odd	NVP
	24	Paired t test (Dependent samples)	RP
	25	Method of Least squares (Exponential trend) – n is even	NVP
	26	Normal distribution (Definition, Properties)	NVP
	27	Normal distribution (Problems)	NVP

28	Paired t test (Dependent samples)	RP
29	Normal distribution (Problems)	NVP
30	Normal distribution (Problems)	NVP
31	ANOVA, need, significance, assumption	NVP
32	Test for Proportions (Single proportion)	RP
33	ANOVA – One way classification problems	NVP
34	ANOVA – One way classification problems	NVP
35	Fisher's Least Significance Test	NVP
36	Test for equality of two proportions	RP
37	ANOVA – Two way classification problems	NVP
38	ANOVA – Two way classification problems	NVP
39	Discussion of previous year question papers	NVP
40	Test for equality of two population variances	RP
41	Discussion of previous year question papers	NVP
42	Discussion of previous year question papers	NVP
43	Confidence Intervals (based on large sample)	RP
44	Confidence Intervals (based on small sample)	RP
45	Revision of previous year question papers	NVP
46	Revision of previous year question papers	NVP
47	Revision of previous year question papers	RP
48	Revision of previous year question papers	RP
49		
50		
51		
52		

PRAVEEN N V Assistant Professor R PRAKASH HOD PRINCIPAL