ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2023-24.

DEPARTMENT :

Physics NEP Paper I-Phy-DSCT1: CLASS : I Sem

Week,Month	CLASS	Portions Planned for 1 hour	Teacher
A fot l	1	Units and measurements: System of units (CGS and SI),	KSS
		measurement of length, mass and time,	
Aug 1 st week	2	Laws of motion: Newton's Laws of motion.	PA
	3	Elasticity: Hooke's law, Stress-strain diagram	PA
	4	Surface tension: Definition of surface, molecular theory	KSS
	1	dimensions of physical quantities, dimensional	KSS
Arr - Ond al-		formulae,	
Aug Z nd week	2	Dynamics of single particle and system of particles,	PA
	3	elastic moduli	PA
	4	angle of contact	KSS
	1	errors, Mean deviation	KSS
	2	Centre of mass	PA
Aug Ord wools	3	Poisson's ratio, relation between elastic constants,	PA
Aug 3 rd week		expression for Poisson's ratio in terms of elastic	
		constant	
	4	surface energy, relation between surface tension and	KSS
		surface energy,	
	1	Problems	KSS
Aug 4 th week	2	problems	PA
	3	problems	PA
	4	problems	KSS
	1	Momentum and Energy: Work and energy,	KSS
	2	Dynamics of Rigid bodies: Rotational motion about an	PA
Aug 5 th week		axis	
	3	Work done in stretching	PA
	4	pressure difference across a curved surface (with	KSS
		example)	
	1	Conservation of linear momentum,	KSS
Oct 1st wook	2	Relation between torque and angular momentum,	PA
OUL 15 WEEK	3	work done in twisting a wire, twisting couple on a	PA
		cylinder	
	4	excess pressure inside a spherical liquid drop	KSS
	1	Conservation of energy with examples,	KSS
Oct 2nd wook	2	Rotational energy, Moment of inertia	PA
Oct 2 nd week	3	Beams (Neutral layer, neutral axis), bending of beams,	PA
		expression for bending moment	
	4	problems	KSS
	1	Motion of rockets	KSS
Oct 3 rd week	2	Laws of MI,	PA
	3	theory of single cantilever	PA
	4	Assignment discussion	KSS
Oct 4 th week	1	problems	KSS

	2	MI of a rectangular lamina and solid cylinder,	PA
	3	problems	PA
	4	Viscosity-	ASG
	1	Special Theory of Relativity: Review of Galilean	KSS
Oct 5 th week		relativity.	
and	2	Flywheel	PA
Nov 1 st week	3	Torsional pendulum, expression for time-period of	PA
		torsional oscillations	
	4	Streamline flow, turbulent flow,	KSS
	1	Internal test.	KSS
Nov 2 nd week	2	Internal test	PA
	3	problems	PA
	4	equation of continuity,	KSS
	1	Constancy of speed of light, Postulates of the Special	KSS
		Theory of Relativity. Length contraction and Time	
		dilation.	
Now 2rd wool	2	Gravitation: Law of Gravitation, Motion of a particle in	PA
NOV 5 rd week		a central force field Satellite in a circular orbit	
	3	determination of rigidity modulus and moment of	KCR
		inertia	
	4	determination of coefficient of viscosity by Poiseuille's	KSS
		method,	
	1	Relativistic addition of velocities	KSS
Now 4th	2	(motion in a plane, conservation of angular momentum,	PA
NOV 4. WEEK		constancy of areal velocity is constant).	
	3	Kepler's laws (statements).	PA
	4	Stoke's method	KSS
	1	Problems	KSS
Nov 5 th week	2	Problems	PA
Dec 1 st week	3	determination of q, η and σ by Searle's double bar with	PA
		necessary theory	
	4	Problems	KSS
	1	Revision	KSS
Dec 2 nd week	2	Revision	PA
	3	Revision	PA
	4	Revision	KSS

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS				
DEPA	RTMENT :	Physics NEP CLASS : III Sem		
		Paper III-Phy-DSCT 3:		
		Wave motion and optics		
Week/Month	CLASS	Portions Planned for 1 hour	Teacher	
· · · ·	1	Waves: Plane and Spherical Waves. Longitudinal and	KSS	
		Transverse Waves.		
	2	Standing Waves: introduction	KSS	
Oct 2 nd week	3	Nature of light: Corpuscular theory, The Wave model,	PA	
		Huygens' wave theory, , Maxwell's electromagnetic waves,		
	4	Fraunhofer diffraction: Introduction- Fraunhofer diffraction-	PA	
	1	Characteristics of wave motion. Plane Progressive	KSS	
		(Travelling) Wave and its equation (derivation),		
	2	Velocity of transverse waves along a stretched string	KSS	
Oct 3 rd week		(derivation)		
	3	Dual nature of light, concept of wave packet. Group	PA	
		velocity and wave velocity-relation between them.		
	4	Theory of single slit diffraction, Two slit diffraction pattern (qualitative).	РА	
	1	Wave Equation – Differential form (derivation).	KSS	
		Particle and Wave Velocities - Relation between them,		
	2	Standing (Stationary) Waves in a String - Fixed and	KSS	
Oct 4 th week		Free Ends (qualitative).		
Oct I Week	3	Interference of light by division of wave front:	PA	
		Coherent source-Interference of light waves by		
		division of wave-front,		
	4	Theory of diffraction Grating - oblique incidence –	РА	
	1	experimental determination of wavelength.	VCC	
	1	Energy Transport – Expression for Intensity of	K22	
Nov 1 st week		Sound Lanlace's Correction (Derivation)		
	2	Theory of Normal modes of vibration in a stretched	KZZ	
	2	string.	100	
	3	Young's double slit interference- theory and	РА	
		experiment,		
	4	Resolving power – Rayleigh criterion, Expression for	РА	
		resolving power of grating and telescope.		
Nov 2 nd week	1	Brief account of Ripple and Gravity Waves., Problems	KSS	
		Superposition of Harmonic Waves: Linearity and		
		superposition Principle.		
	2	Normal Modes of vibrations in Open and Closed Pipes	KSS	
		– Analytical treatment		
	3	Fresnel Biprism- theory Problems	PA	
	4	Fresnel Diffraction- Concept of Fresnel half period	PA	

		zones (mention of equations),	
	1	Revision	KSS
	2	Velocity of Longitudinal Waves in gases (derivation).	KSS
Now 2rd wool	3	Fresnel Biprism- experiment (determination of	РА
NOV 3 rd Week		wavelength)	
	4	Qualitative discussion on diffraction by a circular	РА
		aperture and diffraction by an opaque disc,	
	1	Superposition of two collinear oscillations having (1)	KSS
		equal frequencies	
	2	Energy density and energy transport of a transverse	KSS
Nov 4 th week		wave along a stretched string.	
	3	Interference of light by division of amplitude: at thin	PA
		films - reflected light	
	4	Zone plate (mention of equation for focal length)	PA
		Comparison of Zone plate with lens,	
	1	Superposition- (2) different frequencies (Beats) –	KSS
		Analytical treatment. Beats	
	2	Vibrations in rods – longitudinal and transverse	KSS
Dec 1 st week		modes (qualitative).	
Dee 1 week	3	Interference of light by division of amplitude: at thin	PA
		films – transmitted light	
	4	Theory of diffraction at a straight edge.	PA
	1	Superposition of two perpendicular harmonic	KSS
Dec 2 nd week		oscillations:	
	2	Concept of Resonance, Theory of Helmholtz resonator.	KSS
	3	Colours of thin films; Problems	PA
	4	Polarisation: Production of polarized light, Malus' law,	PA
	1	Lissajous Figures with equal frequency- Analytical	KSS
	0	treatment.	
Dec 3 rd week	2	Acoustics: Absorption coefficient, Reverberation time	KSS
	3	Theory of air wedge;	PA
	4	Phenomenon of double refraction in crystals,	PA
	1	Huygen's theory of double refraction (qualitative),	VCC
Dec4 th week	1	Lissajous Figures with unequal frequency- Analytical	KSS
	2	treatment.	VCC
	2	Sabine's Reverberation formula (derivation),	K35
	3	Overter wave plate and helf wave plate	PA
	4	Quarter wave plate and hall wave plate,	PA
Jan 1 st week	1	Uses of Lissajous figures.	K55 ASC
	2	ractors affecting acoustics in buildings, Requisites for	ASG
	2	good acoustics.	DA
	3	Optical activity Laurent's half shade polarimeter	
	1 1	Drobloms	rA KCC
	2	Acoustic managuramenta intensity and pressure	NOO VCC
Jan 2 nd week	2	lovels	122
	3	Michalson Interferometer (qualitative)	PΔ
	1	Problems	
	Т		IA

Jan 3 rd week	1	Revision	KSS
	2	Problems and revision	KSS
	3	Problems and revision	PA
	4	Revision	PA

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS				
ACADEMIC YEAR 2023-24				
DEPA	RTMENT :	Physics NEP CLASS : V Sem		
		Paper V-Phy-DSCT 5		
	Lla	assical mechanics and Quantum mechanics-i		
Week/Month	CLASS	Portions Planned for 1 hour	Teacher	
	1	Introduction to Newtonian Mechanics:	KSS	
Oct 2 nd week	2	Relativity: Newtonian principle of relativity.	PA	
	3	Introduction to Quantum Mechanics	PA	
	4	Foundation of Quantum Mechanics	KSS	
	1	Frames of references, Newton's laws of motion,	KSS	
	2	Non-inertial frames and fictitious forces. Special Theory of	PA	
Oct 3 rd week		Relativity:		
	3	Brief discussion on failure of classical physics to explain black	PA	
		body radiation		
	4	Probabilistic interpretation of the wave function -	KSS	
	1	Inertial and non-inertial frames. Mechanics of a particle,	KSS	
	2	Michelson-Morley Experiment and its result.	PA	
Oct 4 th week	3	, Photoelectric effect, Compton effect, stability of atoms and	РА	
	4	spectra of atoms.	VCC	
	4	Admissibility conditions on a wave function	K33	
	1	Conservation of linear momentum	KZZ	
	2	Postulates of Special Theory of Relativity	PΔ	
Nov 1 st week	3	Compton scattering: Expression for Compton shift (With	ΡΔ	
	5	derivation).	111	
	4	Schrödinger equation: equation of motion of matter waves -	KSS	
	1	Angular momentum and torque, conservation of angular	KSS	
		momentum,		
Nov 2nd wool	2	Lorentz Transformations.	PA	
Nov 2 nd week	3	Matter waves: de Broglie hypothesis of matter waves,	PA	
	4	Schrodinger wave equation for a free particle in one and	KSS	
		three dimension,		
	1	Work done by a force, conservative force and conservation of	KSS	
Nov 3 rd week		energy.		
	2	Simultaneity and order of events. Lorentz contraction	PA	
	3	Electron microscope, Wave description of particles by wave	РА	
		packets,	1/00	
	4	Ime-dependent and time-independent wave equations,	K55	
Nor Ath	1	Lagrangian formulation: Constraints, Holonomic constraints,	к55	
NOV 4 th WEEK	2	Time dilation	ДΛ	
	2	Group and Phase velocities and relation between them		
	5		IA	

	4	Probability current density, equation of continuity and its	KSS
		physical significance,	
	1	Scleronomic and Rheonomic constraints	KSS
	2	Relativistic transformation of velocity, frequency and wave number.	PA
Dec 1 st week	3	Experimental evidence for matter waves: Davisson- Germer experiment,	PA
	4	Postulates of Quantum mechanics: States as normalized wavefunctions.	KSS
	1	Generalized coordinates, degrees of freedom,	KSS
D Ord 1	2	Relativistic addition of velocities	РА
Dec Z nd week	3	G.P Thomson's experiment and its significance.	РА
	4	Dynamical variables as linear Hermitian operators (position, momentum, angular momentum, and energy as examples).	KSS
	1	Principle of virtual work, D'Alembert's principle,	KSS
	2	Variation of mass with velocity.	РА
Dec 3 rd week	3	Heisenberg uncertainty principle: Elementary proof of Heisenberg's relation between momentum and position, energy and time, angular momentum and angular position,	PA
	4	Expectation values of operators and their time evolution. Ehrenfest theorem (no derivation),	KSS
	1	Lagrange equations, Newton's equation of motion from Lagrange equations,	KSS
	2	Mass energy Equivalence.	PA
Dec4 th week	3	Illustration of uncertainty principle by Gamma ray microscope thought experiment. Consequences of the uncertainty relations:	РА
	4	Particle in a one-dimensional infinite potential well (derivation), degeneracy in three dimensional case,	KSS
	1	Simple pendulum,	KSS
	2	Relativistic Doppler effect. Relativistic Kinematics.	РА
Jan 1 st week	3	Diffraction of electrons at a single slit, why electron cannot exist in nucleus?	РА
	4	Particle in a finite potential well (qualitative), Transmission across a potential barrier, the tunnel effect (qualitative),	KSS
	1	Atwood's machine and linear harmonic oscillator	KSS
Jan 2 nd week	2	Transformation of Energy and Momentum.	РА
	3	Two-slit experiment with photons and electrons. Linear superposition principle as a consequence.	РА
	4	scanning tunnelling microscope, One-dimensional simple	KSS
		energy	
	1	energy Revision	KSS
Loss Ord	1 2	energy Revision	KSS PA
Jan 3 rd week	1 2 3	Revision Revision	KSS PA PA

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2023-24				
DEPAF	RTMENT :	Physics NEP CLASS : V Sem		
		Paper VI-Phy-DSCT 6		
	Ele	ements of Atomic, Molecular& Laser Physics		
Week/Month	CLASS	Portions Planned for 1 hour	Teacher	
	1	Basic Atomic models Thomson's atomic model;	PA	
		Rutherford atomic model		
Oct 2 nd week	2	Vector atomic model and optical spectra	KSS	
	3	Molecular Physics Types of molecules based on their moment of inertia:	KSS	
	4	Laser Physics Ordinary light versus laser light	РА	
	1	Theory of alpha particle scattering	PA	
	2	Vector atom model – spatial quantisation	KSS	
Oct 3 rd week	3	Types of molecular motions and energies:	KSS	
	4	Characteristics of laser light: Interaction of radiation with	PA	
	1	matter -	111	
	1	Rutherford scattering formula	РА	
	2	Vector atom model - Spinning electron;	KSS	
Oct 4 th week	3	Born-Oppenheimer approximation;	KSS	
	4	Induced absorption, spontaneous emission and stimulated	PA	
		emission with mention of rate equations;		
	1	Bohr atomic model – postulates,	РА	
	2	Quantum numbers associated with vector atomic model;	KSS	
Nov 1 st week	3	Origin of molecular spectra; Nature of molecular spectra;	KSS	
	4	Einstein's A and B coefficients – Derivation of relation	РА	
		between Einstein's coefficients and radiation energy density;		
	1	Derivation of expression for radius,	PA	
Nov 2 nd week	2	Coupling schemes – L-S and j-j coupling;	KSS	
NOV 2 WCCK	3	Theory of rigid rotator – energy levels and spectrum,	KSS	
	4	Continuation	PA	
	1	Expression for total energy of electron;	PA	
	2	Pauli's exclusion principle;	KSS	
Nov 3 rd week	3	Qualitative discussion on Nonrigid rotator and centrifugal distortion:	KSS	
	4	Possibility of amplification of light: Population inversion:	РА	
	1	Origin of the spectral lines: Spectral series of hydrogen atom:	PA	
	2	Magnetic dipole moment due to orbital motion of electron –	KSS	
Nov 4 th week	-	derivation;	100	
	3	Theory of vibrating molecule as a simple harmonic oscillator –	KSS	
	4	Methods of pumping; Metastable states;	PA	
	1	Effect of nuclear motion on atomic spectra - derivation:	PA	
	2	Magnetic dipole moment due to spin motion of electron;	KSS	
		Lande g-factor and its calculation for different states;		
Dog 1st wool-	3	-Energy levels and spectrum; Electronic spectra of molecules	KSS	
Dec 1st week		 – fluorescence and phosphorescence; 		
	4	Requisites of laser – energy source, active medium and laser	PA	
		cavity;		

	1	Ritz combination principle; Correspondence principle;	PA
	2	Stern-Gerlach experiment – Experimental arrangement and	KSS
Dec 2 nd week		Principle;	
	3	-Eenergy levels and spectrum; Electronic spectra of molecules	KSS
	4	Difference between Three level and four level lasers with	PA
		examples;	
	1	Critical potentials – critical potential,	PA
	2	Fine structure of spectral lines with examples; Optical spectra	KSS
Dec 3rd week		- spectral terms, spectral notations, selection rules, intensity	
Det 3 rd week		rules; Larmor frequency,	
	3	Raman effect – Experimental study of Raman effect,	KSS
	4	Types of lasers with examples; Construction and Working	PA
		principle of Ruby Laser	
	1	Excitation potential and ionisation potential; Atomic	PA
		excitation and its types,	
	2	Fine structure of the sodium D-line; Zeeman effect: Types,	KSS
Dec4 th week		Experimental study and classical theory of normal Zeeman	
		effect,	
	3	Stoke's and antiStoke's lines,	KSS
	4	Construction and Working principle of He-Ne Laser;	PA
	1	Franck-Hertz experiment;	PA
	2	Zeeman shift expression (no derivation), examples;	KSS
Jan 1 st week	3	Classical and quantum approaches,;	KSS
	4	Application of lasers (qualitative) in science & research,	PA
		isotope separation,	
Jan 2 nd week	1	Sommerfeld's atomic model	PA
	2	Stark effect: Experimental study, Types and examples.	KSS
	3	Applications of Raman effect.	KSS
	4	Applications of laser - communication, fusion, medicine,	PA
		industry, war and space	
Jan 2 rd week	1	Revision	PA
	2	Revision	KSS
	3	Revision	KSS
	4	Revision	РА