ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2023-24.

DEPARTMENT : Physics NEP

Paper II -Phy-DSCT 2:

CLASS : II Sem

Electricity and Magnetism

Week/Mo nth	CLASS	Portions Planned for 1 hour	Teacher
	1	Electric charge and field:	
		Coulomb's law, electric field strength	
	2	Conductors in electrostatic field:	
April 1 st		Conductors and insulators, conductors in	
week		electric field.	
	3	Magnetism Definition of magnetic field,	KSS
		Ampere's law	
	4	Electromagnetic waves: Equation of continuity,	KSS
		Maxwell's equations	
	1	Electric field lines, point charge in an electric	
		field and electric dipole,	
A	2	Capacitance and capacitors, expression for	
April 2 nd		capacitance in a parallel plate capacitor,.	
week	3	Biot-savart law(magnetic force and magnetic	KSS
		flux),magnetic force on a current carrying	
		conductor	
	4	Maxwell's equations, displacement current	KSS
	1	work done by a charge (derivation of the	
		expression for potential energy) and problems	
A a will Ord	2	Parallel plate capacitor with dielectric,	
April 3 rd	3	Lorentz force, Hall effect in a conductor.	KSS
week		Electromagnetic induction, Faraday's laws of	
		induction	
	4	Equation for propagation of electro magnetic	KSS
		wave,.	
	1	Gauss law:	
		Gauss's law and its	
	2	Dielectrics: an atomic view Energy stored in a	
		capacitor,	
	3	Lenz's law, expression for self inductance and	KSS
April 4 th		energy stored in a magnetic field	
week		AC Circuits	
		RMS and Average value of AC, Response of	
		RL,RC and RLC circuits using j operator	
		method, quality factor admittance and	
		impedance power and energy in AC circuits	
	4	Transverse nature of electro magnetic wave,	KSS
		energy transported by electromagnetic wave	

	1	Applications - electric fields of a (i) spherical	
		charge distribution, (ii) line charge and(iii) an	
May		infinite flat sheet of charge and problems	
1 th week	2	Dielectric and Gauss's law and problems	
1 WCCK	3	Mutual inductance .conducting rod in a	KSS
		magnetic field Problems	
	4	Problems	KSS
	1	Electrostatic potential	
		Electric potential, line integral, gradient of a	
		scalar function, relation between field and	
		potential	
May 2 nd	2	DC currents:	
week		Electric currents and current density.	
	3	AC Circuits	KSS
		RMS and Average value of AC	
	4	Poynting vector, magnetic moment of a point	KSS
		charge moving in a circular loop	
	1	Potential due to point charge and distribution	
		of charges (Examples: potential associated with	
		a spherical charge distribution, infinite line	
		charge distribution, infinite plane sheet of	
May 3 rd		charges).	
week	2	Electrical conductivity and Ohm's law (Review).	
		Network theorems (Thevenin's theorem	
	3	Response of RL circuit using j operator	KSS
		method	
	4	electric current in atoms, electron spin and	KSS
		magnetic moment	
	1	Constant potential surfaces	
	2	Superposition theorem	
May 4 th	3	Response of RC circuit using j operator	KSS
week	4	Magnetic materials: magnetic intensity and	KSS
		magnetic induction, intensity of magnetisation	
	1	Potential due to a dipole and electric	
		quadrupole and problems.	
June 1 st	2	Maximum power transfer theorem),	
	3	Response of RLC circuit using j operator	KSS
	4	Susceptibility, permeability,	KSS
	1	Superposition- (2) different frequencies (Beats)	
		– Analytical treatment. Beats	
L. Ord	2	maximum power transfer theorem), Problems	
June 2 nd	3	Quality factor admittance and impedance	KSS
week		power in AC circuits	
	4	Types of magnetic materials, diamagnetic	KSS
		paramagnetic and ferromagnetic materials.	
June 3 rd	1	Superposition of two perpendicular harmonic	
week	1	oscillations:	
Week	2	Transient currents in RC, LR circuits	
	4		

	3	Energy in AC circuits	KSS
	4	Classical Langevin's theory of diamagnetism	KSS
	1	Lissajous Figures with equal frequency-	
		Analytical treatment Uses of Lissajous'	
June 4th		figures	
June 4 th week	2	Transient currents in LCR circuits, Problems	
week	3	Problems	KSS
	4	B-H hysteresis curve ,Hard and soft magnetic	KSS
		materials	
	1	Revision	
July 1 st	2	Revision	
week	3	Revision	KSS
	4	Revision	KSS
	1	Revision and test	
July 2 nd	2	Revision and test	
week	3	Revision and test	KSS
	4	Revision and test	KSS

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2023-24. DEPARTMENT : Physics NEP CLASS : IV Sem Paper IV -Phy-DSCT 4: Thermal physics and Electronics				
Week/Mont h	CLAS S	Portions Planned for 1 hour	Teacher	
A '1 1 at	1	Laws of Thermodynamics: Review of the concepts of Heat and Temperature	KSS	
April 1 st week	2	Thermodynamic Potentials: Internal Energy, Enthalpy,	KSS	
	3	Semiconductor devices		
	4	Electronics: Integrated Circuits,		
	1	The zeroth law of thermodynamics, Thermodynamic variables - extensive and intensive, Equations of state, PV diagrams.	KSS	
April 2 nd week	2	Helmholtz Free Energy, Gibb's Free Energy, properties and significance	KSS	
	3	Intrinsic semiconductors - concept of holes – effective mass -		
	4	Operational Amplifier, Ideal characteristics of Op-Amp,		
April 3 rd	1	First Law of Thermodynamics: Differential form of the First Law of Thermodynamics,	KSS	
week	2	Maxwell's Thermodynamic Relations: Maxwell's thermodynamic relations (using Thermodynamic potentials),	KSS	

	3	Concept of holes – Effective mass	
	4	Basic concepts of feedback and virtual ground,	
	1	Application of the first law for (i) Cyclic Process	KSS
	1	(ii) Adiabatic Process (iii) Isochoric Process (iv)	1100
		Isobaric Process and (v) Isothermal Process.	
Ameril Ath	0		KSS
April 4 th	2	Applications of Maxwell's Relations (1) Gibbs	K22
week		potential, First order Phase Transitions with	
		examples	
	3	Expression for carrier concentration of holes	
		and electrons -	
	4	Inverting and NonInverting Configurations.	
	1	Equation of state for an adiabatic process	KSS
		(derivation)	
May	2	(2) Clausius - Clapeyron Equation.	KSS
1 th week	3	Electrical conductivity.	
	4	Applications- Voltage Follower, Addition and	
	-	Subtraction.	
	1	Work done in an isothermal and adiabatic	KSS
	1	process for an ideal gas	1200
	2		KSS
May 2 nd		Joule-Thomson effect, Liquefaction of gases,	NOO
week	2	Linde's air liquefier	
	3	Extrinsic semiconductors and electrical	
		conductivity (qualitative),	
	4	Applications-Addition and Subtraction.	
May 3rd	1	Internal Energy as a state function	KSS
week	2	Kinetic Theory of Gases:	KSS
WCCK	3	p-n junction and its characteristics,	
	4	Digital Electronics: Analog and Digital circuits,	
	1	Second Law of Thermodynamics: Second law of	KSS
		thermodynamics (Kelvin's & Clausius'	
		statements and their equivalence);	
	2	Maxwell's law of distribution of velocity	KSS
May 4 th		(without derivation),	~~
week	3	Zener diode as voltage regulator- load and line	
		regulation.	
	4	Switching and Logic Levels,	
			VOO
	1	Reversible and irreversible processes with	KSS
	1	examples;	
			1700
	2	Deduction of most probable velocity, mean	KSS
June 1 st		velocity and root mean square velocity,	KSS
June 1 st	2 3	velocity and root mean square velocity, Junction Transistors: Basics of Bipolar	KSS
June 1 st	3	velocity and root mean square velocity, Junction Transistors: Basics of Bipolar Junction Transistors (BJT),	KSS
June 1 st		velocity and root mean square velocity, Junction Transistors: Basics of Bipolar	KSS
June 1 st	3	velocity and root mean square velocity, Junction Transistors: Basics of Bipolar Junction Transistors (BJT),	KSS
June 1 st	3	 velocity and root mean square velocity, Junction Transistors: Basics of Bipolar Junction Transistors (BJT), Digital Waveform. Number Systems: Decimal Number System, 	KSS
	3	 velocity and root mean square velocity, Junction Transistors: Basics of Bipolar Junction Transistors (BJT), Digital Waveform. Number Systems: Decimal Number System, Heat engines: Carnot Engine; Carnot Cycle and 	
June 1 st June 2 nd week	3	 velocity and root mean square velocity, Junction Transistors: Basics of Bipolar Junction Transistors (BJT), Digital Waveform. Number Systems: Decimal Number System, 	

	3	BJT operation, Common Base, Common	
		Emitter and Common	
	4	Binary Number System, Converting Decimal to Binary, Hexadecimal Number System:	
	1	Practical internal combustion engines - Otto and Diesel Cycles Carnot theorem, (qualitative	KSS
June 3 rd		treatment	
week	2	Derivation of Specific heats of ideal gas.	KSS
week	3	Transistor - Collector Characteristics.	1100
	4	Converting Binary to Hexadecimal,	
	1	Hexadecimal to Binary.	
	1	Refrigerator- Coefficient of performance.	KSS
	T	Concept of Entropy, Second Law of	RSS
		Thermodynamics in terms of Entropy,	
	2	Black body radiation and its spectral energy	KSS
June 4 th week		distribution;	RSS
week	3	Field Effect Transistor (FET) and its characteristics	
	4	Digital Circuits: Logic gates, NOT Gate, AND Gate,	
	1	Entropy in reversible process, Entropy in irreversible process, Principle of increase of entropy, Entropy change in (i) adiabatic	KSS
July 1 st		process (ii) free expansion (iii) cyclic process (iv) isobaric process	
week	2	Kirchhoff's law, Stefan's law and Stefan- Boltzmann's law, Wien's displacement law, Rayleigh-Jeans law (Statements),	KSS
	3	Transistor as a CE-Amplifier (qualitative)	
	4	OR Gate, NAND Gate, NOR Gate, XOR Gate, Algebraic Simplification,	
	1	Third Law of Thermodynamics(Nernst Heat theorem): Statement, Significance and Unattainability of Absolute Zero	KSS
July 2 nd week	2	Planck's law (derivation)– deduction of Wien's Law & Rayleigh – Jeans Law.	KSS
	3	Oscillator (Phase shift)	
	4	De Morgan's theorem, Realisation of NAND and NOR functions using TTL.	
	1	Revision	KSS
July 3 rd	2	Revision	KSS
week	3	Revision	-
	4	Revision	
	1	Revision and Test	KSS
July 4 th	2	Revision and Test	KSS
week	4		1700

4	Revision and Test	

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2023-24.

DEPARTMENT : Physics NEP Paper VI -Phy-DSCT 7: CLASS : VI Sem

Elements of Condensed Matter & Nuclear Physics

Week/Mont h	CLAS S	Portions Planned for 1 hour	Teacher
April 1 st	1	Crystal systems and X-rays: Crystal structure:	KSS
	2	Magnetic Properties of Matter,	KSS
week	3	General Properties of Nuclei:	moo
	4	Interaction of Nuclear Radiation with matter:	
	1	Space Lattice, Lattice translational vectors,	KSS
	2	Review of basic formulae: Magnetic intensity, magnetic induction, permeability, magnetic	KSS
April 2 nd		susceptibility, magnetization (M),	
week	3	Constituents of nucleus and their intrinsic properties,	
	4	Gamma ray interaction through matter, photoelectric effect,	
	1	Basis of crystal structure, Types of unit cells, primitive, non-primitive cells.	KSS
April 3 rd week	2	Classification of Dia, Para, and ferro magnetic materials;	KSS
	3	Quantitative facts about mass, radii, charge density (matter density),	
	4	Compton scattering, pair production,	
	1	Seven crystal system, Coordination numbers, Miller Indices,	KSS
April 4 th week	2	Langevin Classical Theory of dia – and Paramagnetism.	KSS
	3	Binding energy	
	4	Energy loss due to ionization (quantitative description of Bethe Block formula),	
	1	Expression for inter planner spacing for cubic crystal. X Rays: X – Rays Production and properties of X rays, Coolidge tube,	KSS
May	2	Curie's law,	KSS
1 th week	3	Main features of binding energy versus mass number curve,	
	4	Energy loss of electrons, introduction of Cerenkov radiation	
May 2 nd	1	Continuous and characteristic X-ray spectra;	KSS

week		Moseley's law. X-Ray diffraction, Scattering of X-rays,	
	2	Ferromagnetism and Ferromagnetic Domains (qualitative).	KSS
	3	Angular momentum, parity,	
	4	Detector for Nuclear Radiations: Gas detectors:	
	1	Bragg's law. Crystal diffraction: Bragg's X-ray	KSS
		spectrometer- powder diffraction method,	
May 3 rd		Intensity vs $2\Box$ plot (qualitative).	
week	2	Discussion of B-H Curve. Hysteresis and	KSS
		Energy Loss,	
	3	Magnetic moment, electric moments	
	4	Gas detectors Estimation of electric field,	
	1	Free electron theory of metals: Classical free	KSS
		electron model (Drude-Lorentz model),	
	2	Hard and Soft magnetic materials	KSS
May 4 th	3	Radioactivity decay: Radioactivity: definition of	
week		radioactivity,	
	4	Mobility of particle, for ionization chamber and	
		GM Counter.	
	1	Expression for electrical and thermal	KSS
		conductivity, Weidman-Franz law,	
T 1 .4	2	Dielectrics: Static dielectric constant,	KSS
June 1 st	3	Half-life, mean life,	
	4	Basic principle of Scintillation Detectors and	
		construction of photo-multiplier tube (PMT).	
	1	Failure of classical free electron theory;	KSS
		Quantum free electron theory, Fermi level and	
		Fermi energy, Fermi-Dirac distribution	
June o Ond		function (expression for probability	
June 2 nd		distribution F(E), statement only);	
week	2	Polarizability (electronic, ionic and orientation),	KSS
	3	Radioactivity equilibrium (a) Alpha decay:	
		basics of a-decay processes,	
	4	Construction of photo-multiplier tube (PMT).	
	1	Fermi Dirac distribution at T=0 and E <ef, at<="" td=""><td>KSS</td></ef,>	KSS
		$T\Box$ 0 and E>Ef, F(E) vs E plot at T = 0 and $T\Box$	
		0. Density of states for free electrons	
June 3 rd		(statement only, no derivation).	
week	2	Calculation of Lorentz field (derivation),	KSS
WCCK	3	Theory of a emission (brief), Gamow factor,	
		Geiger-Nuttall law.	
	4	Semiconductor Detectors (Si and Ge) for	
		charge particle and photon detection (concept	
		of charge carrier and mobility) qualitative only,	
June 4 th	1	Qualitative discussion of lattice vibration and	KSS
week		Concept of Phonons.; Specific heats of solids:	
WUCK	2	Clausius-Mosotti equation (derivation),	KSS

		dielectric loss. Piezo electric effect, cause,	
		examples and applications.	
	3	(b) β -decay: energy kinematics for β decay,	
		positron emission, electron capture, neutrino	
		hypothesis.	
	4	Accelerators: Cyclotrons.	
	1	Classical theory, Einstein's and Debye's theory	KSS
		of specific heats.	
July 1 st	2	Superconductivity: Definition, Experimental	KSS
week		results – Zero resistivity and Critical	
WEEK		temperature	
	3	(c) Gamma decay:	
	4	Cyclotron	
	1	Hall Effect in metals.	KSS
	2	The critical magnetic field – Meissner effect,	KSS
July 2 nd		Type I and type II superconductors.	
week	3	Gamma rays' emission & kinematics, internal	
		conversion (Definition).	
	4	Synchrotrons	
	1	Revision	KSS
July 3 rd	2	Revision	KSS
week	3	Revision	
	4	Revision	
	1	Revision and Test	KSS
July 4 th	2	Revision and Test	KSS
week	3	Revision and Test	
	4	Revision and Test	

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2023-24. DEPARTMENT : Physics NEP CLASS : VI Sem Paper VI -Phy-DSCT 8: Electronic Instrumentation & Sensors				
Week/Mont	CLAS	CLAS Portions Planned for 1 hour	Teacher	
h	S			
	1	Power supply AC power and its characteristics,	KSS	
April 1 st	2	Wave form generators and Filters	KSS	
week	3	Data Conversion and display Digital to Analog		
		(D/A) and Analog to Digital (A/D) converters		
	4	Transducers and sensors Definition		
April 2 nd week	1	Single phase and three phase,	KSS	
	2	Basic principle of standard AF signal	KSS	
		generator:		
	3	A/D converter with preamplification and		

		filtering. D/A converter	
	4	Types of transducers.	
	1	Need for DC power supply and its	KSS
		characteristics, line voltage and frequency,	
April 3 rd	2	Types wave forms. Fixed frequency and	KSS
week		variable frequency,	
	3	Variable resistor network,	
	4	Basic characteristics of an electrical	
		transducer	
	1	Half wave and Full wave (Bridge) Rectifier,	KSS
A		ripple factor,LC	
April 4 th	2	AF sine wave generator:	KSS
week	3	Ladder type (R-2R) D/A converter,	
	4	Factors governing the selection of a	
		transducer,	
	1	Full wave rectifier and Bridge rectifier	KSS
٦ <i>٢</i>	2	Phase shift and Wein-bridge oscillators using	KSS
May		op-amp-	
1 th week	3	Op-amp based D/A converter.	
	4	Resistive transducer-potentiometer,	
	1	Filters: T-section and π -section filters,	KSS
	2	Principle and working.Square wave generator	KSS
May 2 nd		using op-amp	
week	3	Digital display systems and Indicators-	
	4	Strain gauge and types (general description),	
	1	Electronic voltage regulators using ICs.	KSS
	2	Principle and working. Triangular wave	KSS
May 3rd		generator using op-amp.	
week	3	Classification of displays, Light Emitting	
		Diodes (LED)	
	4	Resistance thermometer-platinum resistance	
		thermometer.	
	1	Basic electrical measuring instruments	KSS
		Cathode ray oscilloscope	
Mor- 4th	2	Passive and active filters.	KSS
May 4 th	3	Liquid Crystal Display (LCD)	
week	4	Thermistor. Inductive Transducer-general	
		principles	
	1	Block diagram, basic principle, electron beam,	KSS
	2	Fundamental theorem of filters, Proof of the	KSS
		theorem by considering a symmetrical T-	
June 1 st		network.	
	3	LCD - Structure and working.	
	4	Linear Variable Differential Transducer (LDVT)-	
		principle and construction,	
T O I	1	CRT features, signal display.	KSS
June 2 nd	2	Circuitry and Cut-off frequency and frequency	KSS
week		response of Passive (RC) (op-amp based) filters:	~

	3	Data Transmission systems – Advantages and	
		disadvantages of digital transmission over	
		analog transmission,	
	4	Capacitive Transducer, Piezo-electric	
		transducer,	
June 3 rd week	1	Basic elements of digital storage oscilloscopes	KSS
	2	Types of filters- Circuitry and Cut-off frequency	KSS
	3	Data Transmission systems – Advantages and	
		disadvantages of digital transmission over	
		analog transmission – Continuation	
	4	Photoelectric transducer,	
June 4 th week	1	Basic DC voltmeter for measuring potential	KSS
		difference,	
	2	Circuitry and Cut-off frequency and frequency	KSS
		response of Active (op-amp based) filters:	
	3	Pulse amplitude modulation (PAM),	
	4	Photovoltaic cell – principle and working	
July 1 st week	1	Extending Voltmeter range, AC voltmeter using rectifiers	KSS
	2		KSS
	3	Low pass and high pass Pulse time modulation (PTM) and Pulse width	NSS
	3	modulation (PWM)-	
	4	photo diode- principle and working	
July 2 nd week	1	Basic DC ammeter, requirement of a shunt,	KSS
		Extending of ammeter ranges.	
	2	Band pass filter	KSS
	3	General principles. Principle of Phase Sensitive Detection (PSD).	
	4	Phototransistor – principle and working	
July 3rd week	1	Revision	KSS
	2	Revision	KSS
	3	Revision	
	4	Revision	
July 4 th week	1	Revision and Test	KSS
	2	Revision and Test	KSS
	3	Revision and Test	
	4	Revision and Test	