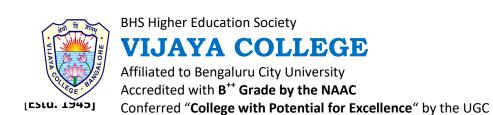


RV Road, Basavanagudi
Bangalore – 560004
Tel:+91-80-26933220/221
Email:vijayadegree@gmail.com
principal@vijayacollege.ac.in
Website: www.vijayacollege.ac.in

ACAD	EMIC	YEAR/SEMESTER	2023-24	II Sei	mester
DEPA	RTME	NT	MICR	OBIOLOG	Ϋ́
SUBJI	ECT/I	PAPER	MBL 102: Micro Ph	bial Bioche ysiology	mistry and
		MONTH	-1 (April)		
WEEK	DAY	PORTIONS PLA	NNED FOR 1 HO	UR	FACULTY
	1	Major Elements of life and t	their primary characte	eristics	MS
1	2	Carbohydrates – Definition,	classification, structu	ıre	KM
-	3	Atomic and Chemical bonds	s – covalent & Non-co	ovalent	MS
	4	Carbohydrates – Properties,	functions		KM
	1	Amino acids & proteins – de	efinition, structure, cl	assification	KM
•	2	Atomic and Chemical bonds waals	s – Ionic, hydrogen &	van der	MS
2	3	Amino acids & proteins – pr	roperties, functions		KM
	4	Biological solvents – structu as universal solvent	are and properties of v	water, water	MS
	1	Lipids & fats - definition, st	ructure, classification		KM
3	2	Water – polarity, hydrophob	pic and hydrophilic in	teractions	MS
3	3	Lipids & fats - properties, fu	inctions		KM
	4	Porphyrins & Vitamins - de	finition, structure, pro	perties	MS
	1	Microbial Growth – definiti growth	on, growth curve, pha	ases of	MS
4	2	Porphyrins & Vitamins – In cytochromes & hemoglobin		ıyll,	KM
4	3	pH & buffers, Henderson-H			MS
	4	Bioenergetics – Free energy	, enthalpy, entropy		KM
TES	T 1				
TES	T 1				



Accredited with B⁺⁺ Grade by the NAAC
Conferred "College with Potential for Excellence" by the UGC

		MONTH -2 (May)	
WEEK	DAY	PORTIONS PLANNED FOR 1 HOUR	FACULTY
	1	Growth Kinetics, Generation time	MS
_	2	Laws of thermodynamics	KM
1	3	Synchronous culture, continuous culture (chemostat & turbidostat)	MS
	4	High energy compounds – classification, structure, significance	KM
	1	Coulter cultures, diauxic growth	MS
2	2	Oxidation reduction reactions, equilibrium constant, redox potential	KM
4	3	Measurement of growth – DMC, Hemocytometer, viable count	MS
	4	Microbial respiration – Electron transport chain	KM
	1	Membrane filtration, electronic counting	MS
3	2	Protein translocation	KM
_	3	Measurement of cell mass	MS
	4	Oxidative &Substrate level phosphorylation	KM
	1	Turbidity measurements – Nephelometer & Spectrophotometer	MS
4	2	Inhibitors of ETC	KM
	3	Influence of environmental factors on growth	MS
	4	Measurement of cell constituents, Growth yield	
TES	T 2		

		MONTH -3 (June)	
WEEK	DAY	PORTIONS PLANNED FOR 1 HOUR	FACULTY
	1	ATP synthase – structure & function, ATP synthesis	KM
1	2	Microbial Nutrints – macro & micro	MS
-	3	Homolactate fermentation	KM
	4	Heterolactate fermentation	KM
	1	Membrane transport – Biological membranes	MS
	2	Light reaction, light harvesting pigments	KM
2	3	Passive, facilitated and active transport	MS
	4	Group translocation, membrane bound protein transport system	KM
	1	Photophosphorylation	MS
3	2	CO2 fixation pathways – Calvin cycle	KM
J	3	Carrier models, liposomes	MS
	4	CO2 fixation pathways – CODH pathway	KM
	1	Ion channels, Na+ K+ ATPase	MS
4	2	CO2 fixation pathways – Reductive TCA pathway	KM
4	3	Revision	MS
	4	Discussion of old University question papers	KM

RV Road, Basavanagudi
Bangalore – 560004
Tel:+91-80-26933220/221
Email:vijayadegree@gmail.com
principal@vijayacollege.ac.in
Website: www.vijayacollege.ac.in

		YEAR/SEMESTER	2023-24	IV Se	mester
DEPAI	RTME	NT	MICRO	OBIOLOG	Ϋ́
SUBJE	ECT/F	PAPER	MBL 104: Micro	bial Enzyn tabolism	nology and
		MONTH	-1 (April)		
WEEK	DAY	PORTIONS PLA	NNED FOR 1 HO	UR	FACULTY
	1	EMP pathway			KM
1	2	Introduction to enzymes. De activity and turnover numbe		, specific	MS
-	3	HMP pathway			KM
	4	Properties of enzymes			MS
	1	ED & PK pathway			KM
	2	Classification of enzymes			MS
2	3	TCA cycle			KM
	4	Exo/endo enzymes, constitu	tive/ induced enzyme	s, isozymes	MS
	1	Fermentation balance, conce fermentation pathways	ept of linear and brand	ched	KM
	2	Monomeric, Oligomeric and	l Multimeric enzymes	S	MS
3	3	Alcohol fermentation and Pa	asteur effect		KM
	4	Multienzymecomplex: pyrulactate dehydrogenase	vate dehydrogenase; i	sozyme:	MS
	1	Butyric acid and Butanol-Ad Mixedacidand2,3-butanedio			KM
	2	Ribozymes, Abzymes			MS
4	3	Propionic acid Fermentation	n, acetate fermentation	1.	KM
	4	Apoenzyme and cofactors			MS
TES'	T 1				

WEEK	DAY	PORTIONS PLANNED FOR 1 HOUR	FACULTY
	1	Chemolithotrophy-Oxidation of Hydrogen, Sulphur	KM
1	2	Prosthetic group-TPP, coenzyme, NAD, metalcofactors	MS
1	3	Chemolithotrophy-Oxidation of Iron & Nitrogen	KM
	4	Mechanism of action of enzymes	MS
	1	Anaerobic respiration- dissimilatory nitrate education and sulphate reduction.	KM
•	2	Activesite, transition state complex and activation energy	MS
2	3	Nitrogen fixation, Ammonia assimilation.	KM
	4	Lock and key hypothesis and Induced Fit hypothesis	MS
	1	Assimilatory nitrate reduction, dissimilatory nitrate reduction, denitrification	KM
3	2	Multi substrate reactions- Ordered, Random and Pingpong	MS
J	3	Biosynthesis of nucleic acids : De novo pathway	KM
	4	Enzyme Kinetics: Kinetics of one substrate reactions	MS
	1	Biosynthesis of nucleic acids : Salvage pathway	KM
4	2	i. Equilibrium assumptions ii. Steady-state Assumptions iii. Lineweaver-Burk, Hanes-Woolf, Eadie-Hofstee equations and plots.	MS
-	3	Aminoacid degradation and biosynthesis	KM
	4	Kinetics of enzyme inhibition. Competitive, non-competitive and uncompetitive inhibition.	MS

WEEK	DAY	PORTIONS PLANNED FOR 1 HOUR	FACULTY
	1	β-oxidation of palmitic acid;	KM
1	2	Effect of changes in pH and temperature on enzyme catalyzed reaction.	MS
1	3	Biosynthesis of palmitic acid.	KM
	4	Kinetics of two substrate reactions. Pre steady state kinetics.	MS
	1	Acetogens: Autotrophic pathway of acetate synthesis	KM
	2	Kinetics of immobilized enzymes	MS
2	3	Ethanol oxidation, sugar alcohol oxidation.	KM
	4	Enzyme regulation: Allosteric enzyme - general properties, Hill equation, Koshland Nemethy and Filmer model	MS
	1	Glyoxylate and glycolate metabolism	KM
	2	Monod Wyman and Changeux model	MS
3	3	Dicarboxylic acid cycle	KM
	4	Covalent modification by variousmechanisms. Regulation by proteolytic cleavage - blood coagulation cascade.	MS
	1	Glycerate pathway	KM
4	2	Regulation of multi-enzyme complex- Pyruvate dehydrogenase. Feedback inhibition.	MS
4	3	Beta hydroxyl aspartate pathway	KM
	4	Oxalate as carbon and energy source	MS

Accredited with B⁺⁺ Grade by the NAAC
Conferred "College with Potential for Excellence" by the UGC

RV Road, Basavanagudi
Bangalore – 560004
Tel:+91-80-26933220/221
Email:vijayadegree@gmail.com
principal@vijayacollege.ac.in
Website: www.vijayacollege.ac.in

ACAD: YEAR		ESTER	2023-24	VI Ser	nester
DEPA	RTME	NT	MICR	OBIOLOG	Y
SUBJI	ECT/F	PAPER	MBL106-I; Im	munology and	l Medical
		MONTH	I -1 (April)		
WEEK	DAY	PORTIONS PLA	ANNED FOR 1 H	OUR	FACULTY
	1	Importance of normal mid skin, throat, gastrointesting			MS
	2	Historical perspective of			KM
1	3	Host pathogen interaction Pathogen, Pathogenicity,			MS
	4	Immunity: Natural (active (active and passive)			KM
	1	Host pathogen interaction Opportunistic infections, Transmission of infection	Nosocomial infection		MS
2	2	Innate and acquired, Hum		ted.	KM
	3	Bacterial diseases: Haemo Mycobacterium tuberculo			MS
	4	Cells and organs of immu			KM
	1	Bacterial diseases: Mycol	bacterium tuberculos	sis	MS
2	2	Cells and organs of immu	ine system		KM
3	3	Bacterial diseases: Salmo	nella typhi		MS
	4	Hematopoiesis, cytokines	S		KM
	1	Bacterial diseases: Vibrio	cholera		MS
_	2	Properties and functions	of B and T Lymp	hocytes	KM
4	3	Bacterial diseases: Bacille	us anthracis, Clostri	dium tetani	MS
	4	Natural killer (NK) cells, Eosinophils and Basophil	• •	rophils,	KM
TES	T 1		,		<u>I</u>

		MONTH -2 (May)	
WEEK	DAY	PORTIONS PLANNED FOR 1 HOUR	FACULTY
	1	Viral diseases: Hepatitis	MS
1	2	Monocytes and macrophages, Dendritic cells and Mast cells	KM
-	3	Viral diseases: Rabies	MS
	4	Primary lymphoid organs; Bone marrow and Thymus	KM
	1	Viral diseases: Dengue, Chikungunya	MS
0	2	Secondary lymphoid organs; Spleen and Lymph nodes.	KM
2	3	Viral diseases: AIDS	MS
	4	Antigen: Immunogenicity and antigenicity	KM
	1	Viral diseases: Corona, Influenza	MS
2	2	Epitopes, B and T cell epitopes, Haptens	KM
3	3	Protozoan diseases: Malaria	MS
	4	Properties and Chemical nature of antigen.	KM
	1	Fungal infection: Pedis (Athlete's foot)	MS
4	2	Antibody: Basic structure of antibody, light and heavy chain, variable and constant region, hinge region, Fab and Fc.	KM
-	3	Fungal infections: Candidiasis.	MS
	4	Structure and functions of different types of antibodies (IgM, IgG, IgA, IgE, and IgD).	KM
TES	T 2		1

		MONTH -3 (June)	
WEEK	DAY	PORTIONS PLANNED FOR 1 HOUR	FACULTY
	1	Antimicrobial agents: General characteristics & classification	MS
1	2	Antibody dependent cell mediated cytotoxicity (ADCC).	KM
1	3	Inhibitors of C ell wall, Cell membrane	MS
	4	Antigenic determinants on immunoglobulins: Isotype, allotype and idiotype.	KM
	1	Inhibitors of Nucleic acid and Protein synthesis; Inhibitors of metabolism.	MS
•	2	Monoclonal antibody production by hybridoma technology	KM
2	3	Mechanism of action of Amphotericin B, Cephalosporin, Penicillin	MS
	4	Affinity and avidity.	KM
	1	Mechanism of action of Tetracyclin, Griseofulvin Amantadine	MS
3	2	Immunoprecipitation; Radial (Mancini) and double (Ouchterlony) immunodiffusion	KM
3	3	Mechanism of action of Acyclovir, Azidothymidine	MS
	4	Agglutination reactions: Hemagglutination and Bacterial agglutination.	KM
	1	Antibiotic resistance microbes	MS
_	2	Enzyme linked immune-sorbent assay (ELISA).	KM
4	3	Hypersensitivity reactions: Definition and Classification	KM
	4	Discussion of Old question papers & Revision	MS

Accredited with B⁺⁺ Grade by the NAAC
Conferred "College with Potential for Excellence" by the UGC

RV Road, Basavanagudi
Bangalore – 560004
Tel:+91-80-26933220/221
Email:vijayadegree@gmail.com
principal@vijayacollege.ac.in
Website: www.vijayacollege.ac.in

DEPA		YEAR/SEMESTER INT	2023-24 MICRO	OBIOLOG	mester Y
		PAPER	MBL106-I; Microb		Engineering
WEEK	DAY	T	NNED FOR 1 HO	UR	FACULTY
	1	Definition of genetic engine engineering, scope of genet	_	genetic	KM
	2	Introduction to Industrial m		nd concepts	MS
1	3	Mode of action and appli DNA polymerases, methyla transferase		•	KM
	4	Criteria for selection of ind	ustrially important mi	icrobes	MS
	1	Kinases, Phosphatases and I engineering	ONA ligases in geneti	c	KM
2	2	Fermentor: Basic features; of typical fermentor	design and componen	ts of a	MS
-	3	Definition, uses and propert	ies of Plasmid vectors	8	KM
	4	Sterilization of fermentor, C foaming and feed.	Control of air, tempera	ature, pH,	MS
	1	pBR and pUC series			KM
	2	Fermentation media: Strate Natural and synthetic med	=	nulation;	MS
3	3	Bacteriophage lambda, cosn	nids.		KM
	4	Role of buffers, precursors, micronutrients.	inhibitors, inducers	and	MS
	1	Cloning in Escherichia coli	and Saccharomyces of	cerevisiae.	KM
4	2	Types of fermentation pro-	cess: Submerged ferr	mentation	MS
4	3	Gene Library: Construction library.	of cDNA library, ge	nomic	KM
	4	Types of fermentation prod (Koji)	cess: Solid state ferme	entation	MS
TES	T 1				ı

		MONTH -2 (May)	
WEEK	DAY	PORTIONS PLANNED FOR 1 HOUR	FACULTY
	1	Isolation of DNA	KM
	2	Objectives and significance of downstream processing	MS
1	3	Restriction digestion and ligation of DNA	KM
	4	Overview of steps in product extraction and purification	MS
	1	Agarose gel electrophoresis	KM
	2	Biomass separation- Filtration and centrifugation	MS
2	3	Blotting techniques- Southern blotting, DNA microarray analysis.	KM
	4	cell disruption- Physical, chemical andbiological methods	MS
	1	PCR techniques and applications.	KM
•	2	Product extraction, purification	MS
3	3	DNA transfer methods: Microinjection, Electroporation	KM
	4	Recovery and product testing	MS
	1	Liposome mediated DNA transfer	KM
4	2	Industrial production of microbial products: Antibiotics (Penicillin)	MS
4	3	Identification and selection of recombinants.	KM
	4	Industrial production of microbial products: Enzymes (Amylase)	MS
TES	T 2		

		MONTH -3 (June)	
WEEK	DAY	PORTIONS PLANNED FOR 1 HOUR	FACULTY
	1	Application of recombinant microorganisms in basic research, industry	KM
_	2	Industrial production of microbial products: anti- cholesterolcompounds	MS
1	3	Application of recombinant microorganisms in medicine, agriculture, environment	KM
	4	Industrial production of microbial products: , anti- cancerous compounds	MS
	1	Products of recombinant DNA technology	KM
2	2	Industrial production of microbial products: hormones (Insulin).	MS
	3	Products of human therapeutic interest - insulin, hGH	KM
	4	Bt transgenic - cotton, brinjal	MS
	1	Gene therapy	KM
3	2	Recombinant vaccines	MS
3	3	Gene therapy	KM
	4	Biological, ethicaland social issues of gene cloning	MS
	1	IPR	KM
_	2	Revision	MS
4	3	Class Test	KM
	4	Discussion of University Question papers	MS