Vijaya College, RV Road, Bengaluru-560004

Department of Computer Science

CURRICULAR ASPECTS for the academic year 2023-2024

Academic Planner with unitisation of the Entire Syllabus

Name of the Department	Computer Science	Subject Title	Teacher
Semester	II SEM BSC	CS-C3T: Data Structures using C	DIVYA S R
			HEMALATHA M
Week/Month			
& Date	Day	Portions Planned for 1 hour	
(Preferably)			
4 th week of	1	Unit-I Introduction and Overview: Definition, Elementary data organization,	SRD
March 2024	2	Data Structures, data structures operations,	SRD
	3	Abstract data types, algorithms complexity	HML
	4	time-space tradeoff.	HML
	1	Preliminaries: Mathematical notations and functions,	SRD
1 st Week of April 2024	2	Algorithmic notations, control structures, Complexity of algorithms,	SRD
	3	asymptotic notations for complexity of algorithms.	HML
	4	String Processing: Definition,	HML
2 nd week of	1	Storing Stings, String as ADT, String	SRD
April 2024	2	Summary and Discussion on Important questions	SRD

	3	Unit-II	HML
		Arrays: Definition,	
	4	Linear arrays,	HML
3 rd week of	1	arrays as ADT, Representation of Linear Arrays in Memory,	SRD
April 2024	2	Traversing Linear arrays, Inserting and deleting,	SRD
	3	Sorting: Bubble sort,	HML
	4	shell sort, quick sort	HML
4 th week of April	1	Insertion sort, Selection sort,	SRD
2024	2	Searching: Linear Search, Binary search,	SRD
	3	Multidimensional arrays,.	HML
	4	Matrices and Sparse matrices	HML
	1	Summary and Discussion on Important questions	SRD
1 st Week of May 2024	2	Unit-III Linked list: Definition, Representation of Singly linked list in memory,	SRD
	3	Traversing a Singly linked list,	HML
	4	Searching a Singly linked list,	HML
2 nd Week of May 2024	1	Memory allocation, Garbage collection, Insertion into a singly linked list,	SRD
	2	Deletion from a singly liked list; Doubly liked list,	SRD
	3	Header liked list	HML
	4	, Circular linked list.	HML
3 rd week of May	1	Summary and Discussion on Important questions	SRD
2024	2	Unit-IV	SRD

		Stacks – Definition, Array representation of stacks,	
	3	Linked representation of stacks,	HML
	4	Stack as ADT,	HML
4 th week of May 2024	1	Arithmetic Expressions: Polish Notation, Application of Stacks, Recursion,	SRD
	2	Towers of Hanoi, Implementation of recursive procedures by stack.	SRD
	3	Queues – Definition,	HML
	4	Array representation of queue,	HML
5 th week of May	1	Linked list representation of queues Types of queue: Simple queue,	SRD
2024	2	Circular queue, Double ended queue ,	SRD
	3	Priority queue,	HML
	4	Operations on Queues, Applications of queues.	HML
	1	Summary and Discussion on Important questions	SRD
1 st week of June 2024	2	Unit-V Graphs: Graph theory terminology,	SRD
	3	Sequential representation of Graphs: Adjacency matrix,	HML
	4	traversing a Graph.	HML
2 nd week of	1	Tree – Definitions, Binary trees,	SRD
June 2024	2	Representing binary trees in memory,	SRD
	3	Traversing binary trees	HML

	4	sparse tables	HML
	1	B trees ,AVL trees ,applications of trees	SRD
	2	Collision resolution with open addressing, collision resolution in chaining.	SRD
3 rd week of	3	Hashing,	HML
June 2024	4	Revision or class adjustments due to holidays ,internal test etc	HML
4 th week of June 2024	1	Revision	SRD
	2	Revision	SRD
	3	Revision	HML
1 st week of july 2024	1	Revision	HML
	2	Revision	HML
	3	Revision	

Name of the Department	Computer science	Subject Title	CA-C14T
Bsc	IV SEM	COMPUTER NETWORKS	Teacher
Week/Month	Day	Portions Planned for 4 hour	NAGESHWARI SHILPA KALA S
	1	Introduction: Communication Network and services	
4th week of MAR 24	2	Approaches to Network Design, Network Functions	NS AND SSK
	3	Network Topology	
	4	Internet of history	
	1	circuit Switching	NS AND SSK
	2	Internet packet switching	
1 ST week of APR 24	3	Key factors in Communication Network Evolution	
	4	OSI-ISO reference	
	1	TCP/IP Model	NS AND SSK
	2	Telnet FTP and IP Utilities.	
2nd week of APR 24	3	IP Utilities and Digital Transmission	
	4	Performance of networks	

	1	Frequency Domain and Time Domain, wave length	NS AND SSK
	2	wave length, Fundamental limits in Digital Communication	
	3	The Nyquist Signalling rate,	
3 rd week of APR 24	4	The Shannon channel capacity	
	1	Transmission Systems: properties of media and digital	NS AND SSK
	1	transmission Systems – Twisted Pair	
Ath wook of ADD 24	2	Coaxial Cable, Optical Fibre,	
411 WEEK OF AF K 24	3	Radio Transmission Infrared Light Error detection and	
	5	correction – Error detection	
	4	Check sum problems	
	1	Error detecting capability of a polynomial code	NS AND SSK
	2	Multiplexing – frequency – Division, Time – Division,	
	2	SONET; Wavelength Division	
1 ST week of MAY		Multiplexing Circuit switches; Telephone network,	
24	3	signalling Traffic and Overload control in Telephone	
		networks	
	4	Message switching	
	1	Peer -to-Peer Protocols: - Peer-to peer Protocols and	NS AND SSK
	1	service models	
2nd week of MAY	2	ARQ Protocols stop and wait, Go -back-N	
24	3	Selective Repeat, Transmission efficiency of ARQ	
		protocols, Other adaptation functions	
	4	Data link layer ,HDLC	
	•		
	1	Local Area Networks and Medium access Control	NS AND SSK
ard a constant of		Protocols:- Multiple access communications	
3 rd week of MAY 24	2	Local Area network – LAN Structure	
	3	MAC Sublayer, Logical link control layer	
	4	Logical Link Control (LLC), DLL (Data Link Layer)	
	1	Reservation Systems, polling, Token passing rings	NS AND SSK
	2	comparison of Random access & Scheduling access control	
4th week of MAY24	3	Comparison of Radom access & SHEDULING MEDIUM	
		access controls	
	4	INTERNALS	
	1	LAN Standard; Token Ring and IEEE 8025	NS AND SSK
1 ST week of JUNE	2	LAN standard, FDDI Wireless LAN's	
24	3	IEEE 802.11 Standards	
	4	802.11ac, 802.11n	
	1	Mixed – media Bridges.	NS AND SSK
	2	Packet Switching Networks: - Network services & Internal	
2nd week of IUNE	2	Network Operation; Packet Network Topology	
24	3	Datagrams & VIRTUAL circuits; structure of switch/	
- '	5	Router,	
	4	Connectionless packet switching	
	1	Routing tables	NS AND SSK
	2	shortest path routing algorithms	
	3	Flooding	
3 ^{ra} week of JUNE 24	4	Dijkstra shortest path	

	1	Link state routing	NS AND SSK
4th week of JUNE	2	congestion control algorithms	
24	3	Revision of unit-1	
	4	Revision of unit-2	

Name of the Department	Computer Science	Subject Title	Teacher
Semester	IV	CA-C7T: OPERATING SYSTEMS	Shilpakala. S & Srikanth
Week/Month	Day	Portions Planned for 1 hour	
	1	UNIT – I Introduction	SSK
4 th week of March	2	Computer System Organization, Architecture, Structure	SSS
	3	Process Management	SSK
	4	Memory Management	SSS
1 st week of April	1	Storage Management	SSK
	2	Kernel Data Structures	SSS
	3	Computing Environments	SSK
	4	Operating System Structures: Services, System Calls	SSS
	1	Types, Operating System Structure, System Boot	SSK
	2	Processes: Process Concept, Scheduling	SSS
2 nd Week of April	3	Operations, Interprocess Communication	SSK
	4	Multithreaded Programming: Multicore Programming, Multithreading Models	SSS
	1	UNIT –II Process Synchronization	SSK
	2	The Critical-Section Problem, Peterson's Solution	SSS

3rd Week of April	3	Synchronizations Hardware, Mutex Locks	SSK
	4	Semaphores, Classic Problems of Synchronization	SSS
	1	Monitors, Synchronization Examples	SSK
4 th week of April	2	Process Scheduling: Criteria, Scheduling Algorithms	SSS
	3	Multi-Processor Scheduling	SSK
	4	Real-time CPU Scheduling	SSS
	1	Deadlocks: System model, Characterization	SSK
1 st week of May	2	Methods for handling deadlocks	SSS
	3	Deadlock Prevention, Avoidance, Detection and Recovery from deadlock	SSK
	4	Assignment 1 – covering all the above topics	SSS
	1	UNIT – III Memory Management Strategies	SSK
2nd week of May	2	Background, Swapping, Contiguous Memory Allocation, Segmentation, Paging	SSS
2nd week of May	3	Structure of the Page Table. Virtual Memory Management	SSK
	4	Demand Paging, Copy-on-Write	SSS
	1	Page Replacement; Allocation of Frames	SSK
	2	Thrashing, Memory-Mapped Files	SSS
3rd week of May	3	Allocating Kernel Memory	SSK
	4	File System: File Concept	SSS
4th week of May	1	Access Methods	SSK
in week of imay	2	Directory structures	SSS

	3	Internals	SSk
	4	Internals	SSS
	1	Disk Structure, Protection	SSS
1 st week of June	2	File-System Implementation: Structure	SSK
	3	UNIT – IV File-System and Directory Implementation	SSS
	4	Allocation Methods, Free Space Management	SSK
	1	Efficiency and Performance, Recovery	SSS
2nd week of June	2	Mass-Storage Structure: Overview, Disk Scheduling	SSK
	3	Disk Management, Distributed Systems: Advantages	SSS
	4	Types of Network- based OS, Robustness, Design Issues	SSK
	1	Distributed File Systems	SSS
3rd week of June	2	Case Studies: The Linux System	SSK
	3	Windows 10 (Process, Memory, storage management)	SSS
	4	Revision	SSK
	1	Revision	SSS
	2	Revision	SSK
4 th week of June	3	Discussion of previous year question papers	SSS
	4	Discussion of previous year question papers	SSK