ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2022-23 DEPARTMENT: Mathematics, CLASS: II Semester

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Algebraic structure - Groups	LP
		Modular systems- properties of groups	LP
	1	Reduction formula for $\int \sin^n x dx$ where n	DR
		Relation between Cartesian and polar coordinates	MSN
		Subgroups, Necessary and sufficient condition for a subset to be a sub group	LP
		Centre of a group, Integral powers of an element of a group	LP
	2	Reduction formula for $\int \cos^n x dx$ where n	DR
June 2022		Angle between the radius vector and the tangent at a point on a curve	MSN
	3	Order of an element of a group,	LP
		properties of the order of a group	LP
		Problems om reduction formulae	DR
		Perpendicular from the pole on to the tangent, p-r equation of the curve	MSN
	4	Coset decomposition of a group, cyclic groups	LP
		Properties of cyclic groups, Index of a sub group	LP
		Reduction formula for $\int \sin^m x \cos^n x dx \times dx$	DR
		To determine pedal equation of a curve whose Cartesian eq is given,	MSN
MONTH/YEAR	WEEK		
		Index of a subgroup of a group, Lagrange's Theorem	LP
	1	Consequences of Lagrange's Theorem	LP
July2022		Problems on $\int \sin^m x \cos^n x dx$	DR
		Derivative of an arc length	MSN
	2	Definition of Normal subgroups, examples	LP

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Theorems on Normal subgroups	LP
		Applications of Integral Calculus	DR
		Derivative of an arc length for polar, parametric curves	MSN
		Theorems on Normal subgroups	LP
	2	Theorems on Normal subgroups	LP
	5	Rectification (lengths of arcs of a curve)	DR
		Curvature of a plane curve	MSN
		Some results on Normal subgroups	LP
		Some results on Normal subgroups	LP
	4	Rectification (lengths of arcs of a curve)	DR
		Radius of curvature for different forms of	MSN
		curves	
MONTH/YEAR	WEEK	PORTIONS	
	1	Centre of a group,	LP
		Problems on Normal subgroups	LP
		Area of plane curves: Quadrature	DR
		Radius of curvature in pedal forms, polar forms	MSN
		Quotient Group(Factor Group)	LP
		Theorems on Factor group	LP
	2	Area of plane curves: Quadrature	DR
August 2022		Centre of curvature	MSN
August 2022		homomorphism of groups	LP
		Theorem on homomorphism of groups	LP
	3	Surface area of revolution	DR
		Coordinates of the Centre of curvature in Cartesian form	MSN
		Properties of Homomorphism of groups	LP
		Kernel of a homomorphism	LP
	4	Surface area of revolution	DR
		evolutes	MSN

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Isomorphism of groups	LP
		Properties on isomorphism of	LP
	1	groups	
	T	Volume of revolution	DR
		Asymptotes, asymptotes parallel to	MSN
		coordinate axes	
	2	Permutation group	LP
		Problems on Permutation group	LP
Contombor		Volume of revolution	DR
September		Problems Asymptotes, asymptotes	MSN
2022		parallel to coordinate axes	
	3	Cayley's theorem	LP
		Model paper discussion	LP
		Model paper discussion	DR
		Oblique asymptotes and problems	MSN
		Model paper discussion	LP
	л	Model paper discussion	LP
	4	Model paper discussion	DR
		envelopes	MSN

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2022-23 DEPARTMENT: Mathematics, CLASS: II Semester (OE) Commercial Mathematics

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Sets - defn, types	KSR
	1	Fundamental principle of counting	KSR
		Percentage-defn	LP
		Operations on sets	KSR
	2	Factorial notation, Permutation, problems	KSR
luna 2022		Calculation of percentage	LP
June 2022		Venn diagrams	KSR
	3	Combination, problems	KSR
		Ratios, types	LP
		Relations	KSR
	4	Simple applications, random experiment	KSR
		Duplicate, Triplicate, Sub duplicate ratios	LP
MONTH/YEAR	WEEK	PORTIONS	Teachers
		Types of relations	KSR
	1	Probability, sample spaces, events	KSR
		Proportion – defn ,properties	LP
	2	Problems on relations	KSR
		Rules of probability, problems	KSR
July 2022		Cross product and reciprocal property	LP
July 2022	3	Domain and range of a relation	KSR
		Occurrence of event- not, and, or	KSR
		United , continued proportion	LP
		Problems on domain and range	KSR
	4	Exhaustive events	KSR
		Problems on proportion	LP
MONTH/YEAR	WEEK	PORTIONS	Teachers
		Functions-types	KSR
August 2022	1	Mutually exclusive events	KSR
		Problems on ratio	LP
		Problems on functions	KSR
	2	Axiomatic probability	KSR
		Problems on percentage	LP
	2	Problems on functions	KSR
	5	Probability of –and, or, not events	KSR

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Miscellaneous problems on ratio and	LP
		proportion	
		Binary operation-problems	KSR
	4	Conditional probability	KSR
	4	Miscellaneous problems on ratio and	LP
		proportion	
September 2022	1	Revision of question bank	KSR
		Revision of question bank	KSR
		Revision of question bank	LP
	2	Revision of question bank	KSR
		Revision of question bank	KSR
		Revision of question bank	LP

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2022-23 DEPARTMENT: Mathematics, CLASS: Fourth Semester

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Formation pf PDE	SBS
		Elimination pf arbitrary constant	SBS
	1	Definition of Laplace transform standard	MSN
		properties	
		Fourier Series definition Euler's formula	KSR
		Elimination of arbitrary functions	SBS
	2	Elimination of arbitrary functions	SBS
	2	Laplace transform of standard functions	MSN
June		Periodic functions ,Fourier coefiicients	KSR
2023		Linear P.D.E of first order	SBS
	2	Linear P.D.E of first order-problems	SBS
	5	Transforms of periodic functions	MSN
		Fourier Series of functions with period 2pi	KSR
		Firstorder nonlinear p.d.e type I	SBS
		Reducible to type I	SBS
	4	Inverse Laplace tranforms	MSN
		Fourier Series of functions with period 2pi	KSR
MONTH/YEAR	WEEK	PORTIONS	Teachers
		Firstorder nonlinear p.d.e type II	SBS
		Reducible to type II	SBS
	T	Inverse Laplace tranforms	MSN
		Fourier series of functions with period 2L	KSR
		Firstorder nonlinear p.d.e type III	SBS
	2	Reducible to type III	SBS
	2	Inverse Laplace tranforms	MSN
h.h.2022		Fourier series of even and odd functions	KSR
JUIYZUZ3		Firstorder nonlinear P.D.E type III &IV	SBS
	2	Reducible to type III&IV	SBS
	3	The convolution theorem	MSN
		Half range – expansion-sine -cosine	KSR
		Charpits method	SBS
		Charpits method	SBS
	4	Transforms of derivatives	MSN
		Finite Fourier transforms	KSR

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Second order linear pde in two variables wirhe	SBS
		constant coefficients	
	1	Finding complementary function	SBS
		Transforms of derivatives	MSN
		Finite Fourier transforms cosine and sin	KSR
		Finding complementary function	SBS
	2	Finding particular integral	SBS
	Z	Transforms of derivatives	MSN
A		Finite Fourier transforms cosine and sin	KSR
August2023		Finding particular integral	SBS
	2	Solving linear PDE with constant coefficients	SBS
	3	Transforms of integrals	MSN
		Transforms derivatives	KSR
		Non-homogeneous linear equations with constant coefficients	SBS
	1	Problem on the above	SBS
	-	Transforms of integrals	MSN
		Inverse Fourier tranforms	KSR
MONTH/VEAR	WEEK		Teachers
	VVLLK	Solutions of one dimensional heat and wave	SBS
	1	equation using Fourier series	000
		Wave equation -problems	SBS
		Trans form of Heaviside function	MSN
		Inverse Fourier tranforms	KSR
	WEEK	PORTIONS	Teachers
		Heat equation –problems on it	SBS
	-	Heat equation – problems on it	SBS
	2	Transforms of unit step function	MSN
6		Revision Class	KSR
Sept 2023	WEEK	PORTIONS	Teachers
		Revision classes	SBS
	2	Solving previous QP	SBS
	3	Solving previous QP	MSN
		Solving previous QP	KSR
	WEEK	PORTIONS	Teachers
		Solving previous QP	SBS
	л	Solving previous QP	SBS
	4	Solving previous QP	MSN
		Solving previous QP	KSR

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2022-23

DEPARTMENT: Mathematics, CLASS: Fourth Semester (OE) Quantitative Mathematics

MONTH/YEAR	WEEK	PORTIONS	Teachers
	3	Number system: Introduction	LP
		Theory of equations: Introduction & Basic defns	MSN
April 2023		Quantitative Aptitude: Introduction and simple problems	KSR
		Operations on numbers	LP
	4	Linear equations , problems	MSN
		Percentage, average, problems	KSR
MONTH/YEAR	WEEK	PORTIONS	Teachers
		Tests on divisibility, problems	LP
	1	Quadratic equations , problems	MSN
		Average speed, problems	KSR
		Problems on tests on divisibility,HCF,LCM	LP
	2	Simultaneous equations in 2 variables, problems	MSN
May 2023		Speed, Time, problems	KSR
1viay 2023	3	Problems on HCF and LCM	LP
		Simple application problems	MSN
		Time-distance problems	KSR
	4	Problems on decimals	LP
		Application problems on different types of equations	MSN
		Problems on Time-Distance	KSR
		Problems on fractions	LP
	1	Problems on ages	MSN
		Application problems on Time-Distance	KSR
	2	Problems on simplification of decimals and fractions	LP
lune 2022	2	Problems on conditional ages	MSN
June 2023		Application problems on trains	KSR
		Problems on square roots	LP
	3	Application problems on conditional age calculations	MSN
		Problems on work and time	KSR

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Problems on cube roots	LP
	4	Problems on present and past age calculations	MSN
		Application problems on work and time	KSR
MONTH/YEAR	WEEK	PORTIONS	Teachers
		Application problems on square roots and cube roots	LP
	1	Application problems on past and present age calculations	MSN
		Problems on work and wages	KSR
	2	Problems on surds	LP
July 2023		Revision on main chapters	MSN
		Problems on clock and calendar	KSR
	3	Problems on indices	LP
		Revision of Question Bank	MSN
		Application problems on clock and calendar	KSR
	1	Solving Model papers	LP
	4	Revision of model papers	MSN
		Solving the model papers	KSR
August 2022	1	Mock test in unit 1	LP
August 2025	1	Mock test in unit 2	MSN
		Mock test in unit 3	KSR

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2022-23 DEPARTMENT: Mathematics, CLASS: VI Semester B.Sc SUBJECT: PAPER-7

MONTH/YEAR	WEEK	PORTIONS	Teachers
	3	Vector space – Examples Properties Total differential equationsNecessary condition for the equation <i>Pdx</i> + Q <i>dy</i> + <i>Rdz</i> = 0 to be integrable Lab:1 (a) Expressing a vector as a linear combination of given vectors (b)Linear dependence and independence of vectors	
April 2023	4	Criterion for a subset to be a subspace Problems on subspaces Total differential equations problems. Lab:2 (a) Basis and Dimension (b) Linear Transformation	DR, MSN LP SBS,KSR
	4	linear span of a set linear combination Simultaneous equations Lab 3: Matrix of Linear Transformation	
	1	linear combination problems linear independence and dependence Simultaneous equations Lab 4: Linear Transformation of a matrix	
May 2023	2	Theorems and problems Basis and dimensions– Standard properties Formation of partial differential equation Lab 5: Basis and kernel of a Linear Transformation, Rank-Nullity Theorem	MSN LP SBS KSR
	3	Examples illustrating concepts and results Basis and dimensions problems	

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Continuation of Formation of partial differential equation. Lab 6: Total Differential Equation	
	4	Internal Test for students	
June 2023	1	Linear transformations – properties matrix of a linear transformation Equations of First Order Lagrange's linear equation – Charpit's method Lab 7: PDE Type1 and Type2	
	2	Change of basis – range and kernel, –rank and nullity Rank – Nullity theorem Continuation of Charpit's method –problems, Standard types of first order non-linear partial differential equation (By known substitution). Lab 8: PDE Type 3 and Type 4	
	3	Rank – Nullity theorem problems Non-singular and singular linear transformations - Standard properties – Examples Standard types of first order nonlinear partial differential equation (By known substitution). Lab 9: Second order linear PDE in two variables with constant coefficients	MSN LP SBS KSR
	4	Definition of orthogonal curvilinear coordinates. Fundamental vectors or base vectors Scale factors or material factors - quadratic differential form, Spherical curvilinear system : Cartesian, Cylindrical conversion of Cylindrical to orthogonal Spherical polar coordinates-theorem Solution of second order linear partial differential equations in two variables with constant coefficients by finding complementary function and particular integral	

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Lab 10: Second order linear PDE in two variables with constant coefficients	
	4	The Spherical coordinate system is orthogonal curvilinear coordinate system. (without proof) Problems based on spherical coordinate system Solution of one – dimensional heat equations. Lab 11: One Dimensional Heat Equation Using Fourier Series	
	1	The Spherical coordinate system is orthogonal curvilinear coordinate system. (without proof) Problems based on spherical coordinate system Solution of one – dimensional heat equations. Lab 11: One Dimensional Heat Equation Using Fourier Series	
July2023	2	Model question papers revision Solution of one – dimensional wave equations using Fourier series Revision of the topics, preparatory test on the topics Lab 12: One Dimensional Heat Equation Using Fourier Series ion	MSN LP SBS KSR
	3	Revision Model papers discussion Lab 13: preparatory exam	
	4	Revision of the topics, preparatory test on the topics Model question papers revision Solution of one – dimensional wave equations using Fourier series Lab 12: One Dimensional Heat Equation Using Fourier Series ion	

ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2022-23 DEPARTMENT: Mathematics, CLASS: VI Semester B.Sc PAPER-8

MONTH/YEAR	WEEK	PORTIONS	TEACHERS
April 2023	2	Numerical solutions of algebraic and Transcendental equations – method of successive bisection Complex numbers- Cartesian and polar form-geometrical representation Complex-Plane-Euler's formula- = cos + <i>i</i> sin LAB: Some problems on CauchyRiemann equations (polar form).	DR, MSN LP, ,SBS ,KSR
	3	Method of false position Functions of a complex variablelimit, continuity, differentiability of a complex function LAB: Implementation of MilneThomson method of constructing analytic functions(simple examples)	
	4	Newton-Raphson method Analytic function Cauchy-Riemann equations in Cartesian and Polar forms Sufficiency conditions for analyticity(Cartesian form only) LAB: Illustrating orthogonality of the surfaces obtained from the real and imaginary parts of an analytic function	
May 2023	1	Numerical solutions of non homogeneous system of linear of algebraic equations in three variables by Gauss Jacobi method Harmonic function- standard properties of analytic functions Construction of analytic function when real or imaginary part is given by Milne- Thomson method. LAB: Verifying real and imaginary parts of an analytic function being harmonic (in polar coordinates).	
	2	Numerical solutions of nonHomogeneous system of linear algebraic equations in three variables by Gauss-Seidel method.	DR, MSN LP, ,SBS ,KSR

MONTH/YEAR	WEEK	PORTIONS	TEACHERS
		Construction of analytic function when real or imaginary part is given-Milne Thomson method. Complex integration- propertiesproblems.	
		LAB: Illustrating the cross ratio preserving property in a transformation.	
	3	Computation of largest Eigen value of a square matrix by power method. Cauchy's Integral theorem-proof using Green's theorem- direct consequences Cauchy's Integral formula with proof-Cauchy's generalised formula for the derivatives with proof LAB: Illustrating that circles are transformed to circles by a bilinear transformation	
	4	Solutions of initial value problems for ordinary linear first NewtonRaphson method order differential equations by Taylor's series Applications for evaluation of simple line integrals Cauchy's inequality with proof – Liouville's theorem with proof. Fundamental theorem of algebra with proof. LAB: Examples connected with Cauchy's integral theorem. Solving algebraic equation (Bisection method).	
June2023	1	INTERNAL TEST	TEACHERS
	2	Euler's method Transformations – conformal transformation Elementary transformations namely Translation, rotation,magnification and inversion – examples LAB: Solving algebraic equation (Regula-Falsi and NewtonRaphson methods).	LP, SBS,MSN ,KSR

MONTH/YEAR	WEEK	PORTIONS	TEACHERS
	3	Euler's modified method The bilinear transformation(B.T.)cross ratio Invariant points of a B.T properties LAB: Solving system of equations (Jacobi and Gauss-Seidel methods)	
	4	 th Runge-Kutta 4 order method (i) B.T. sets up a one to one correspondence between the extended z-plane and the extended w-plane. (ii) Preservation of cross ratio under a B.T. LAB: : Solving for largest eigenvalue by Power method. 	
	4	Revision (iii) A B.T. transforms circles onto circles or straight lines. Problems on finding a B.T., and finding images under a B.T.and invariant points of a B.T. LAB: Solving ordinary differential equation by modified Euler'smethod. Solving ordinary differential equation by Runge- th Kutta method of 4 order	
July 2023	1	Solving model papers Discussion of transformations w = , w = sin w=coshz, w= LAB: MOCK TEST IN PRACTICALS	LP
	2	Solving model papers Revision Solving model papers LAB: PREPARATORY IN PRACTICALS	,SBS,MSN ,KSR