ACADEMIC PLANNER \& UNITIZATION OF SYLLABUS
ACADEMIC YEAR 2022-23
DEPARTMENT: Mathematics, CLASS: II Semester

MONTH/YEAR	WEEK	PORTIONS	Teachers
June 2022	1	Algebraic structure - Groups	LP
		Modular systems- properties of groups	LP
		Reduction formula for $\int \sin ^{n} \mathbf{x} \mathbf{d x}$ where n is a positive integer	DR
		Relation between Cartesian and polar coordinates	MSN
	2	Subgroups, Necessary and sufficient condition for a subset to be a sub group	LP
		Centre of a group, Integral powers of an element of a group	LP
		Reduction formula for $\int \cos ^{\mathrm{n}} \mathbf{x d x}$ where n is a positive integer	DR
		Angle between the radius vector and the tangent at a point on a curve	MSN
	3	Order of an element of a group,	LP
		properties of the order of a group	LP
		Problems om reduction formulae	DR
		Perpendicular from the pole on to the tangent, p-r equation of the curve	MSN
	4	Coset decomposition of a group, cyclic groups	LP
		Properties of cyclic groups, Index of a sub group	LP
		Reduction formula for $\int \sin ^{m} \mathbf{x} \cos ^{n} \mathbf{x d x} x$	DR
		To determine pedal equation of a curve whose Cartesian eq is given,	MSN
MONTH/YEAR	WEEK		
July2022	1	Index of a subgroup of a group, Lagrange's Theorem	LP
		Consequences of Lagrange's Theorem	LP
		Problems on $\int \sin ^{m} \mathbf{x} \cos ^{n} \mathbf{x d x}$	DR
		Derivative of an arc length	MSN
	2	Definition of Normal subgroups, examples	LP

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Theorems on Normal subgroups	LP
		Applications of Integral Calculus	DR
		Derivative of an arc length for polar, parametric curves	MSN
	3	Theorems on Normal subgroups	LP
		Theorems on Normal subgroups	LP
		Rectification (lengths of arcs of a curve)	DR
		Curvature of a plane curve	MSN
	4	Some results on Normal subgroups	LP
		Some results on Normal subgroups	LP
		Rectification (lengths of arcs of a curve)	DR
		Radius of curvature for different forms of curves	MSN
MONTH/YEAR	WEEK	PORTIONS	
August 2022	1	Centre of a group,	LP
		Problems on Normal subgroups	LP
		Area of plane curves: Quadrature	DR
		Radius of curvature in pedal forms, polar forms	MSN
	2	Quotient Group(Factor Group)	LP
		Theorems on Factor group	LP
		Area of plane curves: Quadrature	DR
		Centre of curvature	MSN
	3	homomorphism of groups	LP
		Theorem on homomorphism of groups	LP
		Surface area of revolution	DR
		Coordinates of the Centre of curvature in Cartesian form	MSN
	4	Properties of Homomorphism of groups	LP
		Kernel of a homomorphism	LP
		Surface area of revolution	DR
		evolutes	MSN

MONTH/YEAR	WEEK	PORTIONS	Teachers
September 2022	1	Isomorphism of groups	LP
		Properties on isomorphism of groups	LP
		Volume of revolution	DR
		Asymptotes, asymptotes parallel to coordinate axes	MSN
	2	Permutation group	LP
		Problems on Permutation group	LP
		Volume of revolution	DR
		Problems Asymptotes, asymptotes parallel to coordinate axes	MSN
	3	Cayley's theorem	LP
		Model paper discussion	LP
		Model paper discussion	DR
		Oblique asymptotes and problems	MSN
	4	Model paper discussion	LP
		Model paper discussion	LP
		Model paper discussion	DR
		envelopes	MSN

ACADEMIC PLANNER \& UNITIZATION OF SYLLABUS
 ACADEMIC YEAR 2022-23
 DEPARTMENT: Mathematics, CLASS: II Semester (OE) Commercial Mathematics

MONTH/YEAR	WEEK	PORTIONS	Teachers
June 2022	1	Sets - defn, types	KSR
		Fundamental principle of counting	KSR
		Percentage-defn	LP
	2	Operations on sets	KSR
		Factorial notation,Permutation ,problems	KSR
		Calculation of percentage	LP
	3	Venn diagrams	KSR
		Combination, problems	KSR
		Ratios, types	LP
	4	Relations	KSR
		Simple applications,random experiment	KSR
		Duplicate, Triplicate,Sub duplicate ratios	LP
MONTH/YEAR	WEEK	PORTIONS	Teachers
July 2022	1	Types of relations	KSR
		Probability, sample spaces,events	KSR
		Proportion - defn , properties	LP
	2	Problems on relations	KSR
		Rules of probability,problems	KSR
		Cross product and reciprocal property	LP
	3	Domain and range of a relation	KSR
		Occurrence of event- not, and,or	KSR
		United, continued proportion	LP
	4	Problems on domain and range	KSR
		Exhaustive events	KSR
		Problems on proportion	LP
MONTH/YEAR	WEEK	PORTIONS	Teachers
August 2022	1	Functions-types	KSR
		Mutually exclusive events	KSR
		Problems on ratio	LP
	2	Problems on functions	KSR
		Axiomatic probability	KSR
		Problems on percentage	LP
	3	Problems on functions	KSR
		Probability of -and, or, not events	KSR

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Miscellaneous problems on ratio and proportion	LP
	4	Binary operation-problems	KSR
		Conditional probability	KSR
		Miscellaneous problems on ratio and proportion	LP
$\begin{aligned} & \text { September } \\ & 2022 \end{aligned}$	1	Revision of question bank	KSR
		Revision of question bank	KSR
		Revision of question bank	LP
	2	Revision of question bank	KSR
		Revision of question bank	KSR
		Revision of question bank	LP

ACADEMIC PLANNER \& UNITIZATION OF SYLLABUS
 ACADEMIC YEAR 2022-23
 DEPARTMENT: Mathematics, CLASS: Fourth Semester

MONTH/YEAR	WEEK	PORTIONS	Teachers
$\begin{aligned} & \text { June } \\ & 2023 \end{aligned}$	1	Formation pf PDE	SBS
		Elimination pf arbitrary constant	SBS
		Definition of Laplace transform standard properties	MSN
		Fourier Series definition Euler's formula	KSR
	2	Elimination of arbitrary functions	SBS
		Elimination of arbitrary functions	SBS
		Laplace transform of standard functions	MSN
		Periodic functions ,Fourier coefiicients	KSR
	3	Linear P.D.E of first order	SBS
		Linear P.D.E of first order-problems	SBS
		Transforms of periodic functions	MSN
		Fourier Series of functions with period 2pi	KSR
	4	Firstorder nonlinear p.d.e type I	SBS
		Reducible to type I	SBS
		Inverse Laplace tranforms	MSN
		Fourier Series of functions with period 2pi	KSR
MONTH/YEAR	WEEK	PORTIONS	Teachers
July2023	1	Firstorder nonlinear p.d.e type II	SBS
		Reducible to type II	SBS
		Inverse Laplace tranforms	MSN
		Fourier series of functions with period 2L	KSR
	2	Firstorder nonlinear p.d.e type III	SBS
		Reducible to type III	SBS
		Inverse Laplace tranforms	MSN
		Fourier series of even and odd functions	KSR
	3	Firstorder nonlinear P.D.E type III \&IV	SBS
		Reducible to type III\&IV	SBS
		The convolution theorem	MSN
		Half range - expansion-sine -cosine	KSR
	4	Charpits method	SBS
		Charpits method	SBS
		Transforms of derivatives	MSN
		Finite Fourier transforms	KSR

MONTH/YEAR	WEEK	PORTIONS	Teachers
August2023	1	Second order linear pde in two variables wirhe constant coefficients	SBS
		Finding complementary function	SBS
		Transforms of derivatives	MSN
		Finite Fourier transforms cosine and sin	KSR
	2	Finding complementary function	SBS
		Finding particular integral	SBS
		Transforms of derivatives	MSN
		Finite Fourier transforms cosine and sin	KSR
	3	Finding particular integral	SBS
		Solving linear PDE with constant coefficients	SBS
		Transforms of integrals	MSN
		Transforms derivatives	KSR
	4	Non-homogeneous linear equations with constant coefficients	SBS
		Problem on the above	SBS
		Transforms of integrals	MSN
		Inverse Fourier tranforms	KSR
MONTH/YEAR	WEEK	PORTIONS	Teachers
Sept 2023	1	Solutions of one dimensional heat and wave equation using Fourier series	SBS
		Wave equation -problems	SBS
		Trans form of Heaviside function	MSN
		Inverse Fourier tranforms	KSR
	WEEK	PORTIONS	Teachers
	2	Heat equation -problems on it	SBS
		Heat equation -problems on it	SBS
		Transforms of unit step function	MSN
		Revision Class	KSR
	WEEK	PORTIONS	Teachers
	3	Revision classes	SBS
		Solving previous QP	SBS
		Solving previous QP	MSN
		Solving previous QP	KSR
	WEEK	PORTIONS	Teachers
	4	Solving previous QP	SBS
		Solving previous QP	SBS
		Solving previous QP	MSN
		Solving previous QP	KSR

ACADEMIC PLANNER \& UNITIZATION OF SYLLABUS
 ACADEMIC YEAR 2022-23
 DEPARTMENT: Mathematics, CLASS: Fourth Semester (OE) Quantitative Mathematics

MONTH/YEAR	WEEK	PORTIONS	Teachers
April 2023	3	Number system: Introduction	LP
		Theory of equations: Introduction \& Basic defns	MSN
		Quantitative Aptitude: Introduction and simple problems	KSR
	4	Operations on numbers	LP
		Linear equations, problems	MSN
		Percentage, average, problems	KSR
MONTH/YEAR	WEEK	PORTIONS	Teachers
May 2023	1	Tests on divisibility, problems	LP
		Quadratic equations, problems	MSN
		Average speed, problems	KSR
	2	Problems on tests on divisibility, HCF,LCM	LP
		Simultaneous equations in 2 variables, problems	MSN
		Speed, Time, problems	KSR
	3	Problems on HCF and LCM	LP
		Simple application problems	MSN
		Time-distance problems	KSR
	4	Problems on decimals	LP
		Application problems on different types of equations	MSN
		Problems on Time-Distance	KSR
June 2023	1	Problems on fractions	LP
		Problems on ages	MSN
		Application problems on Time-Distance	KSR
	2	Problems on simplification of decimals and fractions	LP
		Problems on conditional ages	MSN
		Application problems on trains	KSR
	3	Problems on square roots	LP
		Application problems on conditional age calculations	MSN
		Problems on work and time	KSR

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Problems on cube roots	LP
	4	Problems on present and past age calculations	MSN
		Application problems on work and time	KSR
MONTH/YEAR	WEEK	PORTIONS	Teachers
July 2023	1	Application problems on square roots and cube roots	LP
		Application problems on past and present age calculations	MSN
		Problems on work and wages	KSR
	2	Problems on surds	LP
		Revision on main chapters	MSN
		Problems on clock and calendar	KSR
	3	Problems on indices	LP
		Revision of Question Bank	MSN
		Application problems on clock and calendar	KSR
	4	Solving Model papers	LP
		Revision of model papers	MSN
August 2023	1	Solving the model papers	KSR
		Mock test in unit 1	LP
		Mock test in unit 2	MSN
		Mock test in unit 3	KSR

ACADEMIC PLANNER \& UNITIZATION OF SYLLABUS
ACADEMIC YEAR 2022-23
DEPARTMENT: Mathematics, CLASS: VI Semester B.Sc
SUBJECT: PAPER-7

MONTH/YEAR	WEEK	PORTIONS	Teachers
April 2023	3	Vector space - Examples Properties Total differential equationsNecessary condition for the equation $P d x+Q d y+R d z=0$ to be integrable Lab:1 (a) Expressing a vector as a linear combination of given vectors (b)Linear dependence and independence of vectors	
	4	Criterion for a subset to be a subspace Problems on subspaces Total differential equations problems. Lab:2 (a) Basis and Dimension (b) Linear Transformation	$\begin{aligned} & \text { DR, MSN } \\ & \text { LP } \\ & \text { SBS,KSR } \end{aligned}$
	4	linear span of a set linear combination Simultaneous equations Lab 3: Matrix of Linear Transformation	
May 2023	1	linear combination problems linear independence dependence Simultaneous equations Lab 4: Linear Transformation of a matrix	
	2	Theorems and problems Basis and dimensions- Standard properties Formation of partial differential equation Lab 5: Basis and kernel of a Linear Transformation, Rank-Nullity Theorem	$\begin{gathered} \text { MSN } \\ \text { LP } \\ \text { SBS } \\ \text { KSR } \end{gathered}$
	3	Examples illustrating concepts and results Basis and dimensions problems	

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Continuation of Formation of partial differential equation. Lab 6: Total Differential Equation	
	4	Internal Test for students	
June 2023	1	Linear transformations properties matrix of a linear transformation Equations of First Order Lagrange's linear equation - Charpit's method Lab 7: PDE Type1 and Type2	$\begin{gathered} \text { MSN } \\ \text { LP } \\ \text { SBS } \\ \text { KSR } \end{gathered}$
	2	Change of basis - range and kernel, -rank and nullity Rank - Nullity theorem Continuation of Charpit's method -problems, Standard types of first order non-linear partial differential equation (By known substitution). Lab 8: PDE Type 3 and Type 4	
	3	Rank - Nullity theorem problems Non-singular and singular linear transformations - Standard properties - Examples Standard types of first order nonlinear partial differential equation (By known substitution). Lab 9: Second order linear PDE in two variables with constant coefficients	
	4	Definition oforthogonal curvilinear coordinates. vundamental vectors Scale factors or material factors - quadraticdifferential form, Spherical curvilinear system: Cartesian, Cylindrical conversion of Cylindrical to orthogonal Spherical polar coordinates-theorem Solution of second order linear partial differential equations in two variables with constant coefficients complementary function and particular integral\quadfinding	

MONTH/YEAR	WEEK	PORTIONS	Teachers
		Lab 10: Second order linear PDE in two variables with constant coefficients	
	4	The Spherical coordinate system is orthogonal curvilinear coordinate system. (without proof) Problems based on spherical coordinate system Solution of one - dimensional heat equations. Lab 11: One Dimensional Heat Equation Using Fourier Series	
July2023	1	The Spherical coordinate system is orthogonal curvilinear coordinate system. (without proof) Problems based on spherical coordinate system Solution of one - dimensional heat equations. Lab 11: One Dimensional Heat Equation Using Fourier Series	$\begin{gathered} \text { MSN } \\ \text { LP } \\ \text { SBS } \\ \text { KSR } \end{gathered}$
	2	Model question papers revision Solution of one - dimensional wave equations using Fourier series Revision of the topics, preparatory test on the topics Lab 12: One Dimensional Heat Equation Using Fourier Series ion	
	3	Revision Model papers discussion Lab 13: preparatory exam	
	4	Revision of the topics, preparatory test on the topics Model question papers revision Solution of one dimensional wave equations using Fourier series Lab 12: One Dimensional Heat Equation Using Fourier Series ion	

ACADEMIC PLANNER \& UNITIZATION OF SYLLABUS
ACADEMIC YEAR 2022-23

DEPARTMENT: Mathematics, CLASS: VI Semester B.Sc PAPER-8

MONTH/YEAR	WEEK	PORTIONS	TEACHERS
April 2023	2	Numerical solutions of algebraic and Transcendental equations - method of successive bisection Complex numbersCartesian and polar form-geometrical representation Complex-Plane-Euler's formula- $=\cos +i s i n$ LAB: Some problems on CauchyRiemann equations (polar form).	
	3	Method of false position Functions of a complex variablelimit, continuity, differentiability of a complex function LAB: Implementation of MilneThomson method of constructing analytic functions(simple examples)	
	4	Newton-Raphson method Analytic function Cauchy-Riemann equations in Cartesian and Polar forms Sufficiency conditions for analyticity(Cartesian form only) LAB: Illustrating orthogonality of the surfaces obtained from the real and imaginary parts of an analytic function	$\begin{gathered} \text { DR, MSN } \\ \text { LP, } \\ \text {,SBS ,KSR } \end{gathered}$
May 2023	1	Numerical solutions of non homogeneous system of linear of algebraic equations in three variables by Gauss Jacobi method Harmonic functionstandard properties of analytic functions Construction of analytic function when real or imaginary part is given by MilneThomson method. LAB: Verifying real and imaginary parts of an analytic function being harmonic (in polar coordinates).	
	2	Numerical solutions of nonHomogeneous system of linear algebraic equations in three variables by Gauss-Seidel method.	$\begin{gathered} \text { DR, MSN } \\ \text { LP, } \\ \text {,SBS ,KSR } \end{gathered}$

MONTH/YEAR	WEEK	PORTIONS	TEACHERS
June2023		Construction of analytic function when real or imaginary part is given-Milne Thomson method. Complex integrationpropertiesproblems. LAB: Illustrating the cross ratio preserving property in a transformation.	
	3	Computation of largest Eigen value of a square matrix by power method. Cauchy's Integral theorem-proof using Green's theorem- direct consequences Cauchy's Integral formula with proof-Cauchy's generalised formula for the derivatives with proof LAB: Illustrating that circles are transformed to circles by a bilinear transformation	
	4	Solutions of initial value problems for ordinary linear first NewtonRaphson method order differential equations by Taylor's series Applications for evaluation of simple line integrals Cauchy's inequality with proof Liouville's theorem with proof. Fundamental theorem of algebra with proof. LAB: Examples connected with Cauchy's integral theorem. Solving algebraic equation (Bisection method).	
	1	INTERNAL TEST	TEACHERS
	2	Euler's method Transformations - conformal transformation Elementary transformations namely Translation, rotation, magnification and inversion - examples LAB: Solving algebraic equation (Regula-Falsi and NewtonRaphson methods).	$\begin{gathered} \text { LP, } \\ \text { SBS,MSN ,KSR } \end{gathered}$

