ACADEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2022-23. **Physics NEP**

DEPARTMENT:

Paper II -Phy-DSCT 2: Electricity and Magnetism

CLASS : III Sem

Week/Month	CLASS	Portions Planned for 1 hour	Teacher
	1	Electric charge and field:	KCR
		Coulomb's law, electric field strength	
	2	Conductors in electrostatic field:	PA
May 1 st week		Conductors and insulators, conductors in electric field.	
	3	Magnetism Definition of magnetic field, Ampere's law	KCR
	4	Electromagnetic waves: Equation of continuity, Maxwell's equations	KSS
	1	Electric field lines, point charge in an electric field and electric dipole,	KCR
	2	Capacitance and capacitors, expression for capacitance in	РА
May 2 nd week		a parallel plate capacitor,.	
-	3	Biot-savart law(magnetic force and magnetic flux),magnetic force on a current carrying conductor,,	KCR
	4	Maxwell's equations, displacement current	KSS
	1	work done by a charge (derivation of the expression for potential energy) and problems	KCR
	2	parallel plate capacitor with dielectric,	РА
May 3 rd week	3	Lorentz force, Hall effect in a conductor. Electromagnetic induction, Faraday's laws of induction	KCR
	4	Equation for propagation of electro magnetic wave,.	KSS
	1	Gauss law: Gauss's law and its	KCR
	2	Dielectrics: an atomic view Energy stored in a capacitor,	РА
May 4 th week	3	Lenz's law, expression for self inductance and energy stored in a magnetic field AC Circuits RMS and Average value of AC, Response of RL,RC and	KCR
		RLC circuits using j operator method, quality factor admittance and impedance power and energy in AC circuits	
	4	transverse nature of electro magnetic wave, energy transported by electromagnetic wave	KSS
May 5 th and	1	applications - electric fields of a (i) spherical charge	KCR

June 1 st week		distribution, (ii) line charge and(iii) an infinite flat sheet of	
	2	charge and problems	DA
	2	Dielectric and Gauss's law and problems	PA
	3	Mutual inductance .conducting rod in a magnetic field Problems	KCR
	4	Problems	KSS
	1	Electrostatic potential Electric potential, line integral, gradient of a scalar function, relation between field and potential	KCR
June 2 nd week	2	DC currents: Electric currents and current density.	РА
)	3	AC Circuits RMS and Average value of AC	KCR
	4	Poynting vector, magnetic moment of a point charge moving in a circular loop	KSS
	1	Potential due to point charge and distribution of charges (Examples: potential associated with a spherical charge distribution, infinite line charge distribution, infinite plane sheet of charges).	KCR
June 3 rd week	2	Electrical conductivity and Ohm's law (Review). Network theorems (Thevenin's theorem	РА
	3	Response of RL circuit using j operator method	KCR
	4	electric current in atoms, electron spin and magnetic moment	KSS
	1	Test	KCR
	2	Test	РА
June 4 th week	3	Test	KCR
,	4	Test	KSS
	1	Constant potential surfaces, Potential due to a dipole and electric quadrupole and problems.	KCR
June 5 th and	2	Superposition theorem and the maximum power transfer theorem),	РА
July 1 st week	3	Response of RC circuit using j operator	KCR
	4	Magnetic materials : magnetic intensity and magnetic induction, intensity of magnetisation, susceptibility, permeability,	KSS
	1	Superposition- (2) different frequencies (Beats) – Analytical treatment. Beats	KCR
Ind	2	maximum power transfer theorem), Problems	PA
July 2 nd week	3	Response of RLC circuit using j operator	KCR
	4	Types of magnetic materials, diamagnetic paramagnetic and ferromagnetic materials.	KSS
	1	Superposition of two perpendicular harmonic oscillations:	KCR
I.1. Ord	2	Transient currents in RC, LR circuits	РА
July 3 rd week	3	quality factor admittance and impedance power and energy in AC circuits	KCR
	4	Classical Langevin's theory of diamagnetism	KSS
July 4 th week	1	Lissajous Figures with equal frequency- Analytical treatment Uses of Lissajous' figures	KCR
jaij i week	2	Transient currents in LCR circuits, Problems	РА

	3	Problems	KCR
	4	B-H hysteresis curve ,Hard and soft magnetic materials	KSS
July Eth wool	1	Revision	KCR
July5 th week	2	Revision	PA
and Aug 1 st week	3	Revision	KCR
WEEK	4	Revision	KSS
	1	Question bank discussion	KCR
Aug 1 st week 2 nd week	2	Question bank discussion	PA
	3	Question bank discussion	KCR
	4	Question bank discussion	KSS

	ACAI	DEMIC PLANNER & UNITIZATION OF SYLLABUS ACADEMIC YEAR 2022-23.			
DEPARTMENT : Physics NEP CLASS : IV Sem Phy.DSCT4: Thermal Physics & Electronics					
Week,Month	CLASS	Portions Planned for 1 hour	Teacher		
	1	Laws of Thermodynamics: Review of the concepts of Heat and Temperature – the zeroth law of thermodynamics	KSS		
May 1 st week	2	Thermodynamic Potentials: Internal Energy, Enthalpy,	KSS		
	3	Semiconductor devices : Intrinsic semiconductors - concept of holes – effective	KCR		
	4	Electronics: Integrated Circuits,	PA		
	1	Thermodynamic variables - extensive and intensive, Equations of state, PV diagrams	KSS		
	2	Helmholtz Free Energy, Gibb's Free Energy, properties and significance.	KSS		
May 2 nd week	3	concept of holes – effective mass - expression for carrier concentration of holes	KCR		
	4	Operational Amplifier, Ideal characteristics of Op-Amp,	РА		
	1	First Law of Thermodynamics: Differential form of the First Law of Thermodynamics, Application of the first law for (i) Cyclic Process	KSS		
May3 rd week	2	Maxwell's Thermodynamic Relations : Maxwell's thermodynamic relations (using Thermodynamic potentials),	KSS		
	3	mass - expression for carrier concentration of electrons - electrical conductivity and problems.	KCR		
	4	Basic concepts of feedback and virtual ground,	РА		
May 4 th week	1	(ii) Adiabatic Process (iii) Isochoric Process (iv)Isobaric Process and (v) Isothermal Process. Equation of state for	KSS		

		an adiabatic process (derivation)	
	2	Applications of Maxwell's Relations (1) Gibbs potential, First order Phase Transitions with examples,	KSS
	3	Extrinsic semiconductors and electrical conductivity (qualitative), p-n junction and its characteristics	KCR
	4	Inverting and Non-Inverting Configurations.	РА
May 5 th week and June 1 st	1	Work done in an isothermal and adiabatic process for an ideal gas, Internal Energy as a state function Second Law of Thermodynamics: Second law of thermodynamics (Kelvin's & Clausius' statements and their equivalence);	KSS
week	2	(2) Clausius – Clapeyron Equation. and problems	KSS
	3	Zener diode as voltage regulator- load and line regulation.	KCR
	4	Applications- Voltage Follower, Addition and Subtraction.	PA
	1	Reversible and irreversible processes with examples; Heat engines: Carnot Engine; Carnot Cycle and its efficiency(derivation),	KSS
	2	Joule-Thomson effect, Liquefaction of gases, Linde's air liquefier	KSS
June 2 nd week	3	Junction Transistors : Basics of Bipolar Junction Transistors (BJT), BJT operation,.	KCR
	4	Digital Electronics: Analog and Digital circuits, Switching and Logic Levels,	РА
	1	Practical internal combustion engines - Otto and Diesel Cycles Cycles Carnot theorem, (qualitative treatment); Refrigerator- Coefficient of performance	KSS
June 3 rd week	2	Kinetic Theory of Gases : Maxwell's law of distribution of velocity (without derivation), Deduction of most probable velocity	KSS
june e meen	3	Common Base, Common Emitter and Common Collector Characteristics	KCR
	4	Digital Waveform. Number Systems: Decimal Number System, Binary Number System,	РА
	1	Concept of Entropy, Second Law of Thermodynamics in terms of Entropy, Entropy in reversible process, Entropy in irreversible processes	KSS
June 4 th week	2	mean velocity and root mean square velocity, Degrees of Freedom,	KSS
,	3	Field Effect Transistor (FET) and its characteristics	KCR
	4	Converting Decimal to Binary, Hexadecimal Number System: Converting Binary to Hexadecimal, Hexadecimal to Binary.	PA
Juno Eth wool	1	test	KSS
June 5 th week	2	test	РА
and July 1 st week	3	test	KCR
week	4	test	ASG
July2 nd week	1	Principle of increase of entropy, Entropy change in (i) adiabatic process (ii) free expansion (iii) cyclic process (iv)	KSS

		isobaric process	
	2	Law of Equipartition of Energy. Derivation of Specific heats of ideal gas.	PA
	3	Transistor as a CE-Amplifier (qualitative)	KCR
	4	Digital Circuits : Logic gates, NOT Gate, AND Gate, OR Gate, NAND Gate,	ASG
	2	Black body radiation and its spectral energy distribution; Kirchhoff's law, Stefan's law and Stefan-Boltzmann's law,	PA
	3	problems	KCR
	4	NOR Gate, XOR Gate, Algebraic Simplification, De Morgan's theorem,	ASG
	1	Problems	KSS
July4 th week	2	Gravitation: Law of Gravitation, Motion of a particle in a central force field Satellite in a circular orbit	PA
<i>y</i> - <i>y</i>	3	Oscillator (Phase shift) problems	KCR
	4	Realisation of NAND and NOR functions using TTL	ASG
	1	revision	KSS
July5 th week and Aug1 st	2	Wien's displacement law, Rayleigh-Jeans law (Statements), Planck's law (derivation)– deduction of Wien's Law & Rayleigh – Jeans Law	PA
week	3	revision	KCR
	4	revision	ASG
	1	Question bank discussion	KSS
Aug 2nd wool-	2	Question bank discussion	PA
Aug2 nd week	3	Question bank discussion	KCR
	4	Question bank discussion	ASG

Name of the Department	Physics	Subject Title: Atmospheric Physics, Relativity and Astrophysics	
Semester	VI	Paper:601	Teacher
Week/Month	Class	Portions Planned for 1 hour	
Apr 3 rd week	1	Atmospheric Physics, Composition of the earth's atmosphere, Weather and Climate.	PA
	2	Special theory of Relativity Inertial frames of reference.	KSS
	3	Astrophysics - Distances in astronomy- light year and parsec,	KCR
Apr 4 th week	1	Vertical structure of the atmosphere Fixed and variable gases, Mechanism of production and destruction of atmospheric constituents,	PA
	2	The velocity of light- Michelson -Morley experiment.	KSS
	3	solar and sidereal time scales, Luminosities, apparent and absolute magnitude scales	KCR
May 1 st week	1	Troposphere, Stratosphere, Mesosphere and Thermosphere. Temperature variation in the Atmosphere.	PA
	2	Einstein's postulates and problems	KSS
	3	Stellar spectra, spectral classification,	KCR
May 2 nd week	1	Lapse rate, Stability and Instability of atmosphere. Thermodynamics of dry air & moist air.	РА
	2	Derivation of the Lorentz transformations.	KSS
	3	H-R diagram, Temperatures of stars, applications.	KCR

May 3 rd week	1	Virtual temperature, Potential temperature, Scale height, Hydrostatic balance, Change of pressure with altitude,	РА
	2	constancy of the speed of light, length Contraction.	KSS
	3	linear density model for stars (Calculation of Gravitational Potential	KCR
May 4 th week	1	Total potential energy of air column, Green house effect.	PA
	2	time dilation and problems	KSS
May 5 st week	1	Problems	РА
and June 1st	2	Relative nature of simultaneity. the twin paradox.	KSS
week	3	Formation of stars (qualitative).	KCR
June 1st week	1	Climate change and revision	РА
	2	The law of addition of velocities.	KSS
	3	Energy production in stars, the proton-proton cycle,	KCR
June 2 nd week	1	Aerosols: Sources, size, distribution.	PA
,	2	relativistic momentum, relativistic energy,	KSS
	3	Evolution of stars (qualitative)	KCR
June 3 rd week	1	transport and residence time.	PA
	2	rest mass, rest energy, mass- energy equivalence	KSS
	3	End stages of stars- white dwarfs, neutron stars and black holes (qualitative)	KCR
June 4 th week	1	Test	РА
	2	Test	KSS
	3	Test	KCR
June 5 th week	1	Problems	РА
and July 1 st week	2	muon decay life time.e relativistic Doppler effect and relativistic collisions.	KSS
	3	Optical telescopes- their types, characteristics and applications	KCR
July 2 nd week	1	Revision	РА
, , ,	2	Revision	KSS
	3	Revision	KCR
July 3 rd week	1	Question bank discussion	PA
, ,	2	Question bank discussion	KSS
	3	Question bank discussion	KCR

Name of the Department	Physics	Subject Title: Nano Physics, Material Science and Elementary particles	
Semester	VI	Paper:603	Teacher
Week/Month	Class	Portions Planned for 1 hour	
Apr 3 rd week	1	Nano materials: Introduction, classification	PA
	2	Deformation of metals: Introduction, Elastic and Plastic deformation,	KSS
	3	Fundamental interactions: Gravitational, Electro- magnetic, Weak (nuclear) and strong (nuclear) interactions	KCR
Apr 4 th week	1	electron confinement, size effects, bulk materials,	PA
	2	Mechanism Of deformation	KSS
	3	Classification of elementary particles into Leptons, Quarks and force mediators.	KCR

May 1 st week	1	distinct properties of nano materials, Quantum dots,	РА
	2	Deformation by slip. Thermal properties: Introduction	KSS
	3	Leptons: Electron, mu meson, tau meson and the associated neutrinos	KCR
May 2 nd week	1		PA
May 2 nd week	2	nanowires, Nano-films, multi-layered materials, Heat capacity, Vibrational heat capacity, Dulong-	KSS
	2	Petit's law (classical model).	N99
	3	Lepton quantum number and antiparticles.	KCR
May 3 rd week	1	Fullerenes, Carbon nanotubes (CNT), Nano wires,	PA
May 5 rd week	2		KSS
	3	Einstein's theory, Deby's theory (Qualitative),	KSS
	5	Quarks: Properties Of heavier mesons and baryons	NUK
May 4 th week	1	Carbon Nano cones, Hackelites and Graphene,	РА
5	2	mechanism of heat conduction in metals, ceramics	KSS
	3	Related quantum numbers such as	KCR
		strangeness, The eight-fold way	non
		The quark model of Gellmann and Zweig, Types of	
		quarks, Flavour and colour.	
May 5 st week	1	Problems	PA
and June 1st	1	Polymers and Superconductors. Optical properties	KSS
week	2	of metals: Interaction of radiation with materials	кээ
		Atomic transition	
	3	Quarks as constituents of proton. neutron and mesons	KCR
June 1 st week	1	Synthesis techniques	РА
	2	Absorption and emission of photons in metals, Optical	KSS
	-	properties of non-metals. Refractive index	noo
	3	Qualitative explanation Of spin and magnetic	KCR
		moment of nucleons.	
June 2 nd week	1	characterization techniques,	PA
Julie 2 Week	2	Superconductivity: Experimental observation,	KSS
	_	Critical field, Meissner effect Types of	100
	3	superconductors Force Mediators: Mediators for electro-magnetic,	KCR
	5	weak and strong interactions,	NUK
June 3 rd week	1	Production methods for CNT.Mechanical and	PA
		Electric properties of CNT, Nano material	
		advantages	
	2	Phenomenological theories of super conductivity,	KSS
		London equations, B.C.S theory of super conductivity	
	2	(qualitative),	VCD
	3	Force Mediators: Mediators for electro-magnetic, weak and strong interactions,	KCR
June 4 th week	1	Test	РА
	2	Test	KSS
	3	Test	KCR
June 5 th week	1	Applications to fuel cells, phosphors, computer chips,	РА
and July 1 st		sensors.	

		(AC and DC).	
	3	Photon, W and Z bosons, and gluons. Higgs Bosons. The standard model of elementary particles.	KCR
July 2 nd week	1	Revision	PA
	2	Revision	KSS
	3	Revision	KCR
July 3 rd week	1	Question bank discussion	PA
	2	Question bank discussion	KSS
	3	Question bank discussion	KCR