COMPLEX ANALYSIS
The study of complex numbers with algebra is complex analysis

Complex number: Let a and b are any two real numbers, the number of the

form a+ib, where i=vV—1 is called called a complex number. a and b are
respectively real and imaginary parts of complex number.Ex: 2+i3, 3-iv2, % + é ,

etc.

Complex Variable: Let x and y be any two real variables, then z=x+iy is called a
complex variable.

Here x is called real part of Z denoted by Re(z) and y is imaginary part of z
denoted by Im(z)

If z=x+iy is a complex variable, then its conjugate is z = x-iy,

Representation of a complex number

Y-axis
P(x,y)=x+iy
/ g \y
~|'e \ X-axis
(0] X

In the co-ordiiate plane, every point is a pair of real numbers which is a
complex number. Every point on X-axis whose y co-ordinate is 0, thus a
complex number on X-axis has imaginary part zero called real axis. Similarly, on
Y-axis has real part zero called imaginary axis.

. . X
We have, From the above diagram, tane=%, sme=%, cose=—, where

r=y/x2 + y? is magnitude or modulus of the complex number gives the length
of the complex number from the origin and e=tan™! G)is called amplitude or

argument of complex number gives the amount of rotation from the initial

position.
z=x+iy = r(cose+isine) = re’®
] [} [

Cartesian form, polar form, exponential form



Algebra of Complex Numbers:

Addition, subtraction, multiplication and division(with denominator non-zero)
of complex numbers is a complex number.

Simple Problems:

Find modulus, amplitude and express in polar form of:
1) 1+iv/3
Modulus=r = v 12 ++/32=2, amplitude = e=tan™! (%)=tan_1(\/3)=§

Polar form is v/3+i = r(cose+isine)=2(cos§ + isin g)

2) 1-iW3

Modulus=r =\/ 12 + (—/3)2=2, amplitude = e=tan™? (_T\B)ztan‘l(—\@):_?”
. . D - —TT .. —TT Y . . It
Polar form is 1- iv/3 = r(cose+|sme)=2(cos(?) + Lsm(?))= 2(cos§ — isin E)

3) —1+iV3

Modulus=r = \/(—1)2 + (v/3)2=2, amplitude = e=tan ! (\/—i)z - g: 2?”

Polar form is —1+i/3 = r(cose+isine)=2(cosz?n + isin Z?n)

4) —1-i/3

Modulus=r = \/(—1)2 + (=V3)2=2, amplitude = e=tan~! (__—\/13)=n %: 4?”
Polar form is —1- /3 = r(cose+isine)=2(cos4?n + isin 4?”) i3 A 1+iv'3
5) 1+cose +i sine
-1-iV/3 3
-l
Modulus=r = /(1 + cose)? + (sin®)?)=V1 + 2cose + cos?e + sin?e v

= V2 + 2cose



= J2(1 + cose)=_|4cos? S =2cos§,

. 06 €]

[ 2sin-cos-
. — sine — (<]
amplitude = a =tan™! ( )=tan H—==2)=
1+cose 2cos Z 2

. . . . . (5} (5} . . ©
Polar form is 1+cose +i sine= r(cosa+|sma)=2cosz(c055 + isin E)



Properties of Complex Numbers
Let z3, z> be any two complex numbers, then

1. Zl.Zz=Z_1.Z_2

N

@ —, wWherez, # 0

zy) Zz

(98)

Nz z5|=|24 ||z, |

z1|_lzl

|Zz|

P

, Where z, # 0
)

U

. arg(z,z,)= arg(z,)+ arg(z,)

(0)]

arg(2)=arg(z,) - arg(z;)

~

Nz + 25| < |z + |27,

8.|z; — z,| = |z1| — |2,], equality holds only if z1=2z;
9. z +7=2Re(z)

10. z -Z=2Im(z)

11. z Z = |z|?

Euler's Formula

Using Taylor's Theorem, we have

f(x)= 1+—f(0)+ f”(O) f"’(O) If””(O)+ —————

e? o* ., 6 03 o’
=(1- — +— +----- )+i( = - — +— -----)
21 4! 1 3! 5!
. 02 o4 o 03 o5
ei® =cosO +isin@ | where cos® =1- PTR TR and sin© = TR

@ Euler's Formula



eX+e™*

and sin(ix)=i sinhx =i (ex_e_x)

we have, cos(ix)=coshx = >

Equation of straight line in complex form
Equation of straight line passing through two different points z; and z

Proof: let z1 and z> be any two complex points on a straight line. let z be any
arbitrary point on the line. 2

since z1, z and z; are collinear, then
z—z
arg( 1>=O .
ZZ—Z]_
<Z—Zl) _<Z—Zl)
22—21 22—21
(z—zl)_z—zl
Zy_Zq _Zz_ Zq

(z — 21)(Z;221)=(Z = 71) (2= 21)

(z—2)(Z, — 21)=(Z — Z1) (2,-71)

Equation of circle

|. Equation of circle having center at origin,

a
)

radius be r and z be any point on the circle is
|z—0|=ror|z|=r orz=re® because |e®®|=1
Il. Equation of circle having center at zo and radius r

|z — zo|=r or z - zo=r e, because |e'®|=1

z=20+r e®
Problems:
1. Find the | f the point z satisfyi (ﬂ)—f
. Fin e locus of the point z satisfying arg( — )=2
e are( 221\ T . — ]
SoIn.arg(z+1)-3 Note: arg(x+iy)=tan (xj

x+iy—-1\ @ x—1+i s
arg( ? )=—-E::>arg( ?)=—
x+iy+1/ 3 x+1+iy/ 3



arg(x-1+iy) - arg(x+1+iy)=§

y(x+1)-y(x—1)
(x—1)(x+1)+y2 \/_

2
(x—1)(x3:-1)+y2 =V3 2y=\/§((x - Dx+1)+ yz)

2y = V3(x%-1+y2) =>/3(x%+y%-1)=2y

2 1 Eem 2 —
x>+y? \Fy -1=0is a circle whose centre=(0 ,\/g), radius /(\/_) +1= \/g

Note: x? + y% + 2gx + 2fy +c=0is a circle, centre=(-g,-f), radius=\/g2 +f?2—c

2. Find the locus of the point z satisfying |z — 1| >2

soln: |z — 1] =2

lx +iy — 1] =2
Ix—1+iy| =2 m

|x — 1 +iy|2 >4

(x-1)? + y*=>4 is the boundary points and out side the circle whose centre=(1,0)
and radius=2

3.If ( ) is purely imaginary, then show that its locus is a circle.

Soln: ( )IS purely imaginary

real partis O

(z—i)_(x+iy—i)_x+i(y—1)
z-1) x+iy—1 - x—1+iy




multiply and divide x-1-iy

_x+i(y—1)xx—1—iy
a x—=1+iy x-—-1-iy

_x2—x+y?-y+i[(x-1)(y-D-xy]_x*-x+y*-y] . [(x-1D)(y-1)-xy]
B (x—1)2+y? T (x-1)24y2 (x—1)%+y?
Real part =0

xZ+y2-x—y

(x-1)%+y%

2 2 . . 11 . 1 2 1 2
x“+y* —x —y=0isacircle whose centre=(z,5) and radius= (E) + (E)

1

7z
z

4. Show that arg(
z

soln: arg(z) _Z
' z) 2

- -
arg (Z)-arg(z) = >

j =% is a line through origin.



Y_1
X

x+y=0, represents a straight line through origin.

5. Find the locus of the point z satisfying |z + i| < 3

soln:

|z +i] <3

|x +iy +i| <3

x+i(y+1)| <3

x+i(y+1)|?<9

X% +(y+1)’< 9

x> +y’+2y — 8 < 0 is interior and boundary points of a circle whose
centre=(0,-1) and radius =4/(=1)° +8 =3

6. Find the locus of the point z satisfying [z — 1| + [z + 1| < 4
Soln: [z— 1|+ |z+ 1| < 4

on squaring

(jz-1+|z+1) <16

2-1 +|z+1" +2(|z-1 |z +1) <16

2| —2z+1+[7 +22+1+ 2‘22 —1‘ <16

2z +2[2° -1+ 2<16

7 +]z* -1l +1<8

X* +y° +‘(x+iy)2 —l‘s?

‘xz—y2+i2xy—l‘§7—x2—y2



‘xz—y2+i2xy—1‘37—x2—y2

on squaring

‘xz NV i2xy—1‘2 s(?— — y2)2

‘xz —y -1+ i2xy‘2 <49+ X'+ y* —14x7 4+ 2x°y* —14y?

(x2 —y? —1)2 +AXPY? <Xt 4yt —14x% + 2x°y* —14y° + 49

Xyt 1= 2xyR 4 2y7 —2X7 + AXPYP — Xt -yt +14x% - 2x%y? +14y* —49<0
12x2 +16y? —48<0

12x* +16y* <48

2 2
X—+y—£1
4 3

represents boundary and interior pointa of ellipse whose centre=(0,0),
major axis=4, minor axis=2\/€

Assignment:

1. Show that arg(z—_lj =z represents a circle.
z+1) 4

2. Show that|z —1+2i|=4 represent a circle and its position.



Complex Function:

Let z be any complex variable. For each value of z=x+iy a comlex variable there
correspongs to unique value of f(z)=u+iv is called a complex fuction, where
u=u(x,y) and v=v(x,y) be the real valued functions.

Ex: 1. f(z)=2°
f(z)=(x+iy)2=x>+(iy)*+i2xy
=x2-y%+i(2xy)
= u(x,y)= x*-y?, v(x,y)= 2xy
2. f(z)=sinz
f(z)=sin(x+iy)
=sinx cos(iy) + cosx sin(iy)
=sinx coshy + cosx (isinhy)  since, cos(iy)=coshy and sin(iy)= isinhy
= sinx coshy +i cosx sinhy
—> U(x,y)= sinx coshy, v(x,y)= cosx sinhy
3. f(z)=¢*
f(z)=€*
= eXHy
=e*eV
=e*(cosy + isiny), where, e¥= cosy + isiny
=e* cosy + i(e* cosy)
u(x,y)= e* cosy, v(x,y)= e* siny
Limit of a complex function:

Let W=f(z) be any function of z defined in the domain D. f(z) is said to tend to [
as ztendsto zoin D, if foran’ € ' a +ve number howhever small, then there
exist § such that [f(z) —l| <€as|z—2zy| <6



i.e lim f(z)=1

z-Zg

Properties of Limits: properties of limit of a complex function f(z) is same as
that of the properties of real valued functions.

Problems:

z°+

1. Evaluate lim -
Z—i 2—Z1

z3+i i3+ —i+i 0

im = = ==
z—i 5—zi 5-i(i) 5—i%? 6

) z%—4
2. Evaluate lim
it z34+z+5

zZ—2e 6

consider,

i
z=Ze?=2(cos% +i sin%)=2(§ + i%)=\/§ + i

121 T

22=4e s =4(cost +1 sin2)=4(2 + 2 i)=2(1 + iv3)

i3m

z3=8eT=8(cos§ +1i sin§)=8(0 + i)=8i

2_ . L N ) | .
now, lim z2-4  2(1+iV3)—4 —2(1+iV3)

in z3+2z+5  8i+\3+i+5 5+V3+9i
zZ—2e 6

3
. z°+8
3. Evaluate, lim ——
ir z4+4z2+16
z—2e3

consider,

z=2e?=2(cos§ +i sin§)=2(% + i§)=1 + V3

i2m

22=4e s =2(cos + 1 sin22)=2( 2 + i L)=—1+ i3

i3m

23=8e "3 =8(cosm +i sinm)=8(—1 + i0)=—8

iam —
2'=16¢ 5 =16(cost + 1 sin‘)=16(2 — i )=—8(1 + iv/3)

now,



: z3+48 -8+8
lim = - - =0
im z%+4z2+16 —8(1+iV3)+4(-1+iV3)+16

z—2e 3

z2+1

4. Evaluate lim —
z—i z2°+

. Z%+1 i%+1 -1+41 0
lim =- = —
7—i z4+1 i®4+1 —-1+1 0

use L'Hospital's rule

. 2z .
lim —=lim

1 1 1
z—i 625 z5i 3z* 3i* 3

in
Z|z—e 3

5. Evaluate, lim -
i z°>+1

z—e3

in
z(z—33> 0 in 3
llm — 3. - 23= es = coST + isinm=-1
it z°+1 0
Z—e 3

use L'Hospital's rule

in
zZ|z—e3

i
z—e3 |+z it 1 .3
_O+e3 o

lim = lim
LT LT

z3+1 3z2 2r (-1, .43
z—e3 z—e3 3e's 3(7 1
_ 1+4iV3
3(—1+iV3)

multiply and divide —1 — i+/3

_14iV3  -1-iV3
_3(—1+i\/§)x—1—i\/§

_—14+3-2iy/3 2-2iV3_1-iV3

T 3(143) 12 6

Assignment:

2 .
. z4—z+1-i
1. Evaluate lim = oo
z-1+i z4—2z+2

Note: lim f(z) if exist and it is indipendent of the path as z tends to zo.
zZ—2Zg



1. prove that limz
z-l Z

.7 .

lim-=lim —

z—izZ x—-0x+iy
y-l

x—iy

take the path y=mx

. x—imx 1-im
=lim ————=——-,depends on m
x-0x+imx 1+im

y-i

thus, the above limit does not exist.

Xy
x2+y2

2. Show that lim (
z-0

li xy
pak (xz + y2>

select the path y=mx

) does not exist

lim ( 4 )=11m ( ) £ depends on m
x-0 \x?+y?/) x-0 \x2+m?x2/) 14+m?

y—0 y—0

thus,

. X .
lim ( Y ) does not exist.
z—i \x2+y?

2
3. Show that lim ( Y ) does not exist.
7—0 \x%+y2

2
lim( 4 ), take tha path along y=x

z—0 \xZ+y?

2 2
. . X . 1} 1
hm( 4 )=11m( )=11m (—)=—
x—0 \x2+y? x-0 \x24+x2) x>0 \2/ 2
y—-0

also, take the path y?>=mx

. 2 . mx . m

lim ( Y ) = hm( )=11m (—)=1

750 \x2+y?2 x24+mx/) x—-0 \x+m
x—0

the value is not unique, thus the limit does not exist.

Continuity of a complex function:



A complex function f(z) is said to be continuous at z=zo, if lim f(z) must exit
ARTA

and lim f(z)=f(zo)

Z—2Zg
Problems:
X
> Y > forz+0 ] o
1. show that f(z)=< X" +Vy is not continuous at the origin
0 forz=0

X

soln: consider, lim f(z)=lim
,Z—>0f( ) x2+y?
Z—0

take a path z— 0 along y=mx

Xmx m

lim X _-lim = depending on'm
220 y2 4y2 X202 1 m2x2” 14m?2 P &

thus, limit does not exist and therefore (z) is not continuous at z=0

2
_(x+y) forz#0

2. show that f(z)={ x* + y° is not continuous at the origin

1 forz=0
. . . T (x+y)?

soln: consider, il_l’)% f(2)=lim,_,, 1y
consider, alog x-axis, y=0

. x+y)?% . (x+0)%
lim; g x2+y? =m0 e
consider, along y=mx

. x+y)? . x+mx)? 1+m
li (x+y) =l ( ) _ depends on m

220 x2+y? X=0 y24m2x2” 1+m2

thus, limit does not exist and therefore f(z) is not continuous at z=0

Assignment:

Z . . . . .
1. show that f(z)=— is discontinuous at the origin.
z



Differentiation of complex function

Defn: A complex function function f(z) is said to be differentiable at z=z, if

i Ef(z)— f (o)

71—

]exists and it is denoted by f'(z,)

f(2)- f(zo>j

ie f'(z,)=Ilim
(%) HZoL Z-1,

Above definition can also be defined as

f(z,+02) - f(zo)j
0z

N s
f (20)_|'”z‘_>zo (
in general, f(2)is differentiable, then

£1(2) = lim (f(z+5z)—f(z)j

670 O

Theorem: If f(z) is differentiable at z=z,, then f(z) is continues at z=z,.
Proof:

f(z) is differentiable at z=z,

—> f/(z,) = lim [f(z)_f(zo)j

consider,

lim_ (f(2)- f(z))=lim_ ( T(2)-1(z) xz—zO]

Z—-1,
=f'(z,)0=0
lim (f(z)-f(z,))=0
lim_ f(2)=1(z)

——> f(z) is continuous at z=z,



Analytic Function:

Defn: A complex function f(z) is said to be analytic at z=z, if it is differentiable
not only at z=z, and also at neibourhood at z=z,.

Analytic function is also called regular function of holomorphic function.
note: sum, product and quotient of to analytic functions is analytic.
Neighbourhood of a point z,

Neighbourhood of a point z=z, is the set of points whose centre at z=z5 and
radius €, a positive however small.

Necessary and sufficient conditions for f(z) to be analytic
Necessary Condition:

A necessary condition that f(z)=u(x,y)+iv(x,y) be analytic in a domain D is that
the 1st order partial derivatives exist and satisfy the equations

ou ov ou oV
=— and — =

ox oy dy o
Proof:

By data f(z) is is analytic in a domain D,

which implies that f(z) is differentiable in D, (analyticity—> differentiability)

e £'(2)=lim (f(“&)_ f(z)jexists

0z—0 Oz
the limit exists is unique and it is independent of the path as 6z(0X,0y) —> 0
ie (0X,0y) >0
we have, f(z)=u(x,y)+iv(x,y)
f(z+0Z)=u(X+0X,y+0Yy)+IV(X+ X,y +IY)

f(z+02)— f(2) =u(X+X,y+OYy)+iv(X+X,y+Yy)—[u(x,y)+iv(x,y)]
f(z+0z2)— f(2) =u(X+X,y+0Yy)—u(Xx,y)+i[v(x+ X,y +Yy)—v(x,y)]



f(z+0z2)-1(2)

I|m52—>0 57
_ U(X+0X, Yy +3Y)—u(X,y) +i[v(X+ X,y +0Yy)—V(X,Y)]
339 OX+I0Yy

consider along the path, 0y =0 i.e(6xX) > 0

£(2) = lim (u(x+5x,y)—u(x,y)+i[v(x+5x,y)—v(x,y)]j
ox—0 SX SX

(=M M)

f (z)—(axﬂax) @

Also, consider along the path, X =0i.e(dy) — 0

i L DD o))

F1(2)=lim,. .| i U(x,y+5y)—U(x,y)+[V(x,y+5y)—V(x,y)]j
oy—0 y §y 5y

: .o0u oV
(z) =lim,, [ — + j (2)

comparing (1) and (2), we get

ou oV ou ov _ . :
= d —= which are called Cauchy's-Riemann equations.

X oy oy  ox




Sufficient condition:

The complex function f(z)=u(x,y)+iv(x,y) with first order derivatives of uandv

0
exist and all are continuous in the domain D satlsfymg —=—and —v =— the

f(z) is analytic.
We have by Taylor's theorem

u(x+8x,y+8y)=u(x,y)+ Z—Z 6x+z—; 5y+ higher order derivatives

ou ou
u(x+dx,y+0y)=u(x,y)+ F 6x+£ S5y + &
similarly,
v ov
V(x+8x,y+0y)=v(x,y)+ P 6x+£ Sy + &
f(z+ 6z)=u(x+ éx,y+ Sy)+i v(x+ &x,y+ 6y)
du du . v ov
= u(x,y)+ P 6x+5 &y + e +i[v(x,y)+ >, 6x+£ 8y + &

= u(x,y)+ i v(x, y)+ a_u 6x+a—u Oy + & +i[v(x, y)+ 6_v 6x+a—v 6yl+ (g+igy)

f(z+ 0z) -f(z)= u(x,y)+ i v(x, y)+ - 6x+— Oy + g +i[v(x, y)+ a_ 6x+g—;

Oyl+ (e1+igy)
lulxy)+ivixy)]
= a_u 5x+a—u oy + €1+i[v(x,y)+ a_v 6x+a—v Syl+ (&,+igy)

( +i —) Sx+(55+i27) Syl+ (er+ier)
( + i —) Sx + (— +i —) 8y + (&,+ig,), using C-R equations
( + l—) 6x+|(lg— + Z—x) Sy+ (g1+igy)
& (5 + la) (6x + i6y)+(e1+igy)
f(z+ 8z2) f(z) = (g—;‘ + zg—Z) 5z +(e,+igy)

divide by §z and take limit as 6z — 0, then &, & €, having higher derivatives are

negligible

) Qu, 0y s
f'(z) = limé‘z—>0( T Z_Z)_( ti E)

i.e f'(z)exist, therefore f(z) it is analytic in the domain D

Cauchy-Reimann Equations in Polar form



Proof:

Let (r, ©) be the polar co-ordinates of a point whose cartesian co-ordinates are
(x,y), we have x=rcos6, y=r sin©.

NOW, z=x+iy= rcosO + i rsin® = r(cosO + i sinB) =re®

we have f(z)=f(r e'®)

i.e u+iv=f(r e®), where u and v are functions of r and ©

diff. wrt'r'

ou

— ti—=f'(re').e" - 1
il '(re"). (1)
diff. wrt' '

ou

— t+i—=f'(re?).rie"

20 '(re").

ou .ov ou .ov )
—+1—=ri| —+1— |, using (1)
08 00 or or
a—u+iﬂ |a—u—r@————(2)

00 00 or or
equating real and imaginary parts

au oV oV rau ou 18v au ov

N £24¢ v
00 o’ 90 or  or rof 069 or |aretheCR

Equations in polar form.

I. Show that every differentiable function in the complex plane is continuous
but not converse.
Proof:

Let f(z) is differentiable at z=zo
f(@)—f (o)

. exist in whathever manner as z approches to z,
—40

f(Z):j(ZO) . (Z _ Z())

i.e T'(zy)=lim,_,,

consider, lim,_,, [f(2) — f(zo)]=lim,_,,
=f'(z,) x0
=0
Mmy_z, [f(Z) - f(ZO)]=O
Mzz, f(2)=f(2)
thus, f(z) is continous at zo.
To prove that the converse is not true, i.e every continous function is need be
not differentiable
consider, an example f(z)=z is continous at z=0



f() f(0) =lim,
Z—>

we have, f'(0)=lim,_, —2

INI

x—1iy

= limx—o
Y0 X+iy

take the path along x-axis(y=0)
limxﬁo ;_C=1

-llmz_>0

take the path along y-axis(x=0)
. —iy
limy,_o 7=-1
limiting value is different along different paths, thus the limit does not exist.
therefore f’(0) does not exist.

Problems: Show that the following functions are analytic
1. f(z)=2>
soln:
f(z)=(x+iy)*
=x2+(iy)?+i2xy
=x%-y?+ i2xy
u= x2-y?, v=2xy
a—u:2x, 6_u:_2y @=2y, Q:ZX
OX oy OX oy

ou dv ov —-0u

C-R eqns. aza and Py W are satisfied

therefore, f(z)=z? is analytic

2. f(z)=€*

soln:

f(z)=e**V=e*e" = eX(cosy + i siny)
u= e*cosy, v= e’siny

a—u—excosy 6—u—-exsin @—exsiny @—excos

ox "oy " "oy Y

C-R egns. a_u @ 8—“--@ are satisfied, therefore f(z) is analytic.
ox oy oy ox

3. f(z)=sinz

Soln: f(z)=sinz
=sin(x+iy)
=sinx cos(iy)+cosx sin(iy)
=sinx coshy + i cosx sinhy, where cos(iy)=coshy, sin(iy)=isinhy



u=sinxcoshy v=cosx sinhy

ou ou . : o ov
— =cosx coshy, — =sinx sinhy — =-sinx sinhy, — = cosx coshy
OX oy OX oy

C-R eqns.a—u=@, 8_u=@ are satisfied, therefore f(z) is analytic.

OX oy o0y OX
4, f(z)=l

z

Soln: f(z)= 1

z

flo)e =t X2
X+1y X+1ly x-—1ly
_oX=ly X i y
X2+y2 X2+y2 X2+y2
X -y
u= , V=
X2+y2 X2+y2

@_u:(x2+y2).l—2x.2x= y2_x22,21: 2 y L 2x= 22xy2 N
o (ry)f  (eey) X ey (Y
a_U: —X _2y- —2Xy : @:_ (x2+y2)_1—2y.2y _ yz_X22
N (x+y°) (x2+y2) oy (x*+y?) (x*+y?)
C-R eqns.a—u=@, 8_u=_@ are satisfied, therefore f(z) is analytic.

oX oy oy oX
Assighment:

5. log(z), 6. cosz, 7.23

8. Show that f(z)=z2+1 is analytic and hence find f'(z)
Soln: f(z)=2*+1
=(x+iy)?+1
=x2-y2+i 2xy +1
u= x>-y2+1, v=2xy
ou ou _ ov ov

— =2X, -2 — =2y, —=2X

OX oy Y OX Y oy

C-R egns. 8_u=@’ 8_u=_@ are satisfied, therefore f(z) is analytic.
oX oy oy oX

we have,



ou .ov )
f'(2)=—+i—=2x +i2
(2) OX  OX y
ou .ov )
—+i1—=2( x+Iy)=2z
OX  OX ( y)

9. Show that f(z)=cosz is analytic and hence find f'(z)
Soln: f(z)=cosz

=cos(x+iy)

=cosx cos(iy)-sinx sin(iy)

=cosx coshy - i sinx sinhy
u= cosx coshy, v=-sinx sinhy

ou . ou .
— =-sinx coshy, — = cosx sinhy
OX oy

ov ) ov .
— =—cosx sinhy, 5 =-sinx coshy

C-R eqns.a—u=@, 8_u=@ are satisfied, therefore f(z) is analytic.
OX oy o0y OX
we have
f'(z)= u +1 N
OX  OX

f'(z) = -sinx coshy + i(—cosx sinhy)
f’(z) = -(sinx coshy + i cosx sinhy)
= - (sinx cos(iy) + cosx sin(iy))
=-sin(x +1y)
=-sinz



2 2
10. If f(z)=u+iv is analytic , then show that (2| i (Z)U +(ﬁ| f (z)|j =|f'(2)["
OX oy

Proof:we have, f(z)=u+iv

|f(z)|2 =u’ +v?

Diff. wrtx
ov
2|f(z)|—(|f(z)|) 2u— ZV&
|f(z)|—(|f(z)|) u—+v%————(1)
similarly,
Diff wrty
2|f(z)|—(|f(z)|) 2u5+2v%
|f(z)|—(|f(z)|) —u—+vg—z————(2) using C - R equations

squaring and adding (1) and (2), we have

2[ 0 ’ [ 6 "o Y (v _auY
| 2] +lrof| 0] —(sZe] (w2

2| 0 2 0 2 2( @ ’ 2 O ? ou o
@) U&(lf(z)n} {qu(zn)} J (2] (2] a2

2, Wehavef'(z):a—u+i@
oX  OX

ver{{Zeen]-[Sren] ) -

cancelling |f (z)|2 both the sides, we get

(§| f (2)0 +(%| f (z)|j _

11. If f(z)=u+iv is analytic and ¢is any differential function of x and y, then

oo (2] (3] (2] o




Proof: By chain rule in differentiation(total derivative), we have

o _opau opov

= ————1) and
OX OUOX OV OX
op _opou , op v
&y oudy ovoy
%:%(—@]+%a—u, using C - R equations
oy ou\ oOx) ovoX
o__9N g,
oy  Ouox oV oX

squaring and adding (1) and (2)

SR

(W_uﬂﬂf +(_%@+%5_U)2
ou OX OV OX ou OX oV oX

2 2 2 2
:(%J (@j J{%j (@] Lo 090U op v
ou OX ov OX OuU OX OV OX
_,0¢ v 0 ou
ou OX v ox

BES

f ’(z)|2 . Where

Orthogonal system of curves:

2 (G535

f’(z)| " ox

(35
(5

. OV

+i—

OX

Two families of curves f(x,y)=c1 and g(x,y)=c; are said to be orthogonal families

if they intersect right angles to each other.

Thm: If f(z)= u(x,y) +i v(x,y) is analytic then u(x,y)=c1 and v(x,y)=c; are

orthogonal families.
Proof: we have
consider, u(x,y)=c1

o
ov

)

8_u
OX

|



ou  au
UL U g hen m, Y x_X pyc-REM.

ox oy dx dx ou ov
oy OX
also,
v(x,y)=c2
N v
ov ovd d
= 8ydi 0,then m, = diz_%_ﬁ_ by C-R Eqgn.
oy OX
now,
ou ov
m xm, = —%xgﬁ -1
ox o

thus the curves u(x,y)=c1 and v(x,y)=c; are orthogonal family of curves.

Harmonic function:

A function f(x,y) is said to be orthogonal, if it satisfies the Laplace's equation

o*f  o°f
+
aXZ 8y2

Thm: If f(z)= u(x,y) +i v(x,y) is analytic then u(x,y) and v(x,y) are harmonic
functions.

Proof: we have, f(z)=u(x,y) +i v(x,y) is analytic

then the C-R equations %J _X. (1) and M _ % - - - (2)are satisfied

oy

=0

Diff.(1) wrtxand (2) wrtyand adding,
we get

o°u N o'u_ o O

Ox> 0y® Oxoy Oyox

o’u  ou
_+_
8X2 ayZ

=0



this proves that u(x,y) is harmonic

also,

Diff.(1) wrtyand (2) w r t x and subtracting,
we get

ou  du v N oV
Oyox oxoy oy’ ox°
_0v 0%
=4 —

aXZ 6y2

0

this proves that v(x,y) is harmonic
Harmonic conjugates:

Let u(x,y) be harmonic function. If v(x,y) is said to be harmonic conjugate of u
then (i) v(x,y) is harmonic and (ii) v satisfies C-R equations.

Thm: If u(x,y) and v(x,y) are harmonic conjugates to each other iff they are
constant functions.
Proof: u(x,y) and v(x,y) are harmonic conjugates

then

a_“:@-_-(l) and a_uzﬂ---(Z) are satisfied
oxX oy oy Ox

@za_“___@) and @:__&‘---(4) are satisfied
ox oy oy  OX

using (1) and (4), we have

u_—ou_,u_g

oX  OX OX

ou ..

- 0, then u is indipendent of x

X

using (2) and (3), we have

M__M_

a oy oy

ou

— =0, then uisindipendent of y
thus, u is independent of x and y

similarly, we can prove v is independent of x and y



ou  o%u , ,
conversely, If u=constant, then F +— =0 — uisharmonic
X

o ov o . .
similarly, If v=constant then PVl + w =0 = uisharmonic
X



Problems:

1. Prove that y? - 3x%y is harmonic and hence find its conjugate

soln:

Let u=y? - 3x%y

M - Xy, N 3y?-3x°

OX oy o'u  ou _ . . ,
then, — +—=0 which proves u is harmonic

o°u o%u ox> oy

— = -6y, =6y

OX oy

let v be the harmonic conjugate of u

dv = @dx +@dy
OX

= -a—udx + 8—udy , using C - R eqn.
oy OX

dv = -(38y* — 3x*)dx + (-6 xy)dy
dv = (3x* —3y?)dx + (~6xy)dy

oN

this is an exact diff. eqn. of the form M dx + N dy =0 is exact if GM = 6_
X

Soln. is

V= IM dx + I(terms independent of x in N)dy +c
V= J'(C%x2 —3y?)dx+0.dy +c

v=x>-3xy’+cC
1
2. Prove that Elog(x2 + yz)is harmonic and hence find its conjugate

1
Soln: let u==log(x? + y?
Slog(x*+y?)



a_u_l 1 Dy — X 82u_(X2+y2)1—X.2X_ yz_)(2 __(1)
8X_2(x2+y2) _x2+y2’ x> - (x2+y2)2 _(x2+y2)2

u_1 1 L,y ofu (X +yi)l-y2y oy _®
8y_2(x2+y2) y__X2+y2 oy’ (x2+y2)2 _(x2+y2)2

0? 0?

8xl:+ﬁl: 0

therefore, u is harmonic.

let v be the harmonic conjugate of u

dv = @dx + @dy
OX oy

= _a_udx + a—dy using C - R eqn.
oy OX

x> +y x> +y?

this is an exact diff. eqn. of the form M dx + N dy =0 is exact if GM = 8_N

OX

Soln. is

V= j Mdx + j(terms independent of xin N)dy +c

j 4dx+0dy+c
X2+ y?

V= —ytan‘l(ij +C
y

3. Prove that e*cosy + xy is harmonic and hence find its conjugate

soln:

Let u= e*cosy + xy

N _ e*cosy +y u_ e’siny + X

A~ v T T 2 2

X % then, ou —+ 8—2 =0
o°u 82u ox> oy

PV =e’cosy, —, = -e*cosy



which proves u is harmonic.

let v be the harmonic conjugate of u

dv = @dx +@dy
OX oy

ou ou .
=-—dx+—dy , using C-R eqgn.
o EW y g q

dv = (e”siny - X)dx + (e"cosy + y)dy

this is an exact diff. egn. of the form M dx + N dy =0 is exact if GM =2 (Z—N
X

Soln. is

V= IM dx + .[(terms independent of xin N)dy +c
V= I(exsiny -X)dx + y.dy+c

i X2 YP
v=e smy—?+?+c

Assignment :

Prove that the following functions are harmonic and find its conjugate
(i) x2-y?+x+1 (ii) e*siny + x* - y?

Construction of analytic functions:

Finding one part(real or imaginary) in which other part of analytic function is
given

1. Find the analytic function whose real part is x3-3xy?.
soln: let f(z)=u+iv be analytic function.

given u= x3-3xy?

To find the imaginary part v

1st method:

we have

dv= @dx + @dy
OX oy



dv = -a—udx + a—udy, using C-R eqgn.
OX
dv = 6xydx + (3x*-3y’)dy is an exact DE
soln is
V= I Mdx + I(terms independent of x in N)dy +c

V= j6xydx + I—Syzdy +c

v=3x%y-y3+ ¢ is the imaginary part.
analytic function is
f(z)=u+iv
= x3-3xy2+i(3x%y-y3+c)
=(x+iy)*+c
=3+ c
Alternate method:(Milne Thomsons' method)
soln: let f(z)=u+iv be analytic function.
given u= x3-3xy?

ou ) , Oou
&—3X -3y, 5——6xy
we have
frz)= 24
oX  OX
:5_u_i8_u by C-R eqn.
ox oy

f'(z) = (3x* —3y?) +i b6xy
By Milne Thomsons' method, put x=z and y=0
we get,
f'(z) = 3z°
integratingwrtz
f(z)=2%+ ¢, is the analytic function.
2. Find the analytic function f(z)=u+iv, whose real part is u= e*(xcosy-ysiny).
Soln:
u= e*(xcosy-ysiny)



au X X H X 1
6—:e cosy +e*(xcosy—ysiny)= e*(cosy +xcosy—ysiny)
X

ou : i <y .
a—:e (—xsiny —ycosy—siny)=—-e*(xsiny+ycosy+siny)
y

we have
f’(z):g—u+i(;ﬂ
X X
_8_u_.6_u by C-R eqn
ox oy

f'(z) =e*(cosy +xcosy —ysiny)-ie*(xsiny +ycosy +siny)

By Milne Thomsons' method, put x=z and y=0
we get,
f'(2)=e’(1+2)

integratingw rt z, we get
f(2)=e*(1+2) -jeZdz

=e’(1+2)-e" +¢C

=ze’+¢



3. Find the analytic function f(z)=u+iv, whose imaginary part is
v= xsinxsinhy -ycosxcoshy.

soln:

v= xsinxsinhy -ycosxcoshy

? = (xcosx+sinx)sinh y + ysinxcosh y
X

= Xsinxcosh y —cosx(ysinh y +cosh y)

22

we have

=Xl

ox ox by C-R egn
ov

= +j—
oy OX

f’(z) = xsinxcosh y —cos x(ysinh y +cosh y) +i[(xcosx +sinx)sinh y + ysinxcosh y]

By Milne Thomsons' method, put x=z and y=0
we get,
f'(z)=1zsinz—-cosz

integratingw rt z, we get

f(z)= -zcosz+jcoszdz—sinz+c

=-7C0Sz +sinz-sinz+c
=-7C0SZ+C

4. Find the analytic function f(z)=u+iv, whose imaginary part is
eY(xsinx+ycosx)

soln:

Given, v= eY(xsinx+ycosx)

N : : Ny o
&:e (xcosx+sinx— ysinx), 5=e cosx —e Y (xsin X + ycosx)

=ge ’(CoS X — XSin X — y cos X)

we have

=M+ Y
ox 0K by C-R egn
oV .oV



f'(z) =eY(cosx — xsin X — ycosx) +ie~Y(Xcos X +sin X — ysin x)

By Milne Thomsons' method, put x=z and y=0
we get

f'(z) =(cosz—1zsinz) +i(zcosz+sinz)
integrating wrt z, we get
f(z)=sinz —(—zcosz —J—cosz dz)+ I (zsin z —jsin z dz —cosz)

=sinz +z cosz - sinz +i(z sinz + c0sz - C0sz)
=zcosz +izsinz +c =z(cosz+isinz)+c

5. Find the analytic function f(z)=u+iv, given u - v=e*(cosy-siny)
soln:

u - v=e*(cosy-siny)

Diff. wrtx

ou ov .

———=¢e"(cosy—siny)——— (1L

= ox (cosy —siny) @)

Diff. wrty

ou ov ., .

———=¢"(-siny—cosY)

y o using C-R equations
ov O

AL -e*(siny +cosy)————(2)
OX
adding (1)and (2), we get

—2@ =—2e"siny
OX
— =¢"sin
OX y
subtracting (1)and (2), we get

Za—u =2e*cosy
OX

a—u—excosy
OX



f’(z):a—u+i@
OX OX

=e*cosy +ie*siny =e{ cosy +isiny)

By Milne Thomsons' method, put x=z and y=0
f'(z)=¢"

integratingwrtz

f(z)=e*+c

6. Find the analytic function f(z)=u+iv, given u + v=

X2+ y?

soln:
u+v=

x> +y°
Diff. wrtx

2 2 _ 2 2

8_u+@:(x +)2/).12 2x.2x: ); Xzz___(l)
OX OX (X +Yy°) (X“+y9)
Diff. wrty
ou ov —X
= (2Y)
oy oy (X +y’)
ov ou_  —2xy
e ()
oXx ox (X“+y9) Using C-R egns.

adding (1)and (2), we get

29 vZ ]}
2a_u:y X° —2Xy

OX (x2 3 y2)2

ou 1| y*—x>-2xy

ox 2 (¢ +y?)

subtracting (1)and (2), we get




vy —x*+2xy

X (xt+ y2)2

v _ 1]y -x"+2xy

X 2 (x* + yz)2

f'(z):a—u+i@
OX OX

2L (xy?) |2l (ey)

By Milne Thomsons' method, put x=z and y=0

f'(z)—l z Ll -2 | _ l(i_lij—(l;'ji
2| 2 2| 24 | 2lz2 z22)\ 2 )z?

on integratingwrtz
1-i)1

f(z)=—| — |~ +C
@--(35);

Laplace Eguation in polar form:

1| y* —x*—2xy Ll y? — X% + 2xy

2 2
If f is a function of r and B, then the equation q +li +iza—f2 =0 is called
o ror r°o6

Laplace equation in polar form.

7. Find the analytic function f(z)=u+iv, whose real part is(r + 1}:05&

r
soln:

Given u=(r +1jcos«9
r

a—u:[l—%} a—u:—(r+1jsin0
or r 00 r

we have,



e —+ |(—a—j , using C-R equation@:_—la—u
r oo

or r o6
=e™ ((1——12 jcos@+ il(r +EJsin Hj
r rlr

=e " [(1—%}059 + i(1+ izjsin Hj
r r

by Milne Thomsons' method putr=2z,6=0
f'(2) =1—i2

z
integrate w r t z, we get

f(z):z+l+c
z

8. Find the analytic function f(z)=u+iv, whose imaginary part is _5'220
r
Given, v= —sin20
r2

oV _2sin20 ov _ -2c0s20
or r* o0 r?

we have, () = e (8_U +1 @j
or or
1 ov ou 1lov

- . OV ] )
f'(2)=e"| == +i=— |, using C-R equation — ==—
(2) (r arj g k or roé
¢ m[l(—QcosZHj .2gn29J
=e ¥ = _ +i——
r r r

using Milne Thomsons' method, putr =z and 6 =0

we get,

, -2
f'(2)= =
integratingw rtz

f(2)=2+c
z



Complex line integral:
Let f(z) be a continuous function of all points of a smooth curve(contour) C,

b
then jc f(z)dz or I f (2)dz is called complex line integral of f(z) along C

between the points z=a and z=b.

Note: Properties of complex line integrals are similar to that of line integrals of
real valued functions.

Problems:

1.Evaluate J; (x* —iy?)dz along the parabola y=2x? from (1,2) to (2,8).
soln:
(i) y=2x
dy=4x dx
x varies from 1to 2

jc (x* —iy*)dz = j(xz —iy?)(dx +idy) = f[(x2 ~i(2x?)%)(dx + i4xdx)
:j(x2 —idx*)(1+i4x)dx = j[xz +16X° +i(4x° - 4x*) | dx

3 6 4 5 2
=X p16X 14X 4 X =§+§.64—(1+§j+i 16—£32—(1—£]
3 6 4 "5) 33 3 3 5 5

:8+512—9+i{80—128—1}_511_.49

3 5 3 5

2.Evaluate JC z°dz along the straight line from z=0 to z=3+i.

soln:
Egn. of st. line is

X=X Y-V x-0 y-0 X dx
X, =% Y,—VY, 3-0 1-0 ¢ 3 d 3
: XY 1
24 = N2 . _ .

Lz dz-J.C(x+|y) (dx+|dy)-£(x+|g (dx+§dx)

3 2 3 3|3 \3 \3
=j(1+i1) (1+i1)x2dx:(1+i1j X _@+1)7 27 (3+1) =6+i§
5 3 3 3) 3], 27 3 3 3




3.Evaluate '[C z%dz, from z=0 to z=3 and then z=3 to z=3+i.

z=3+i
Soln:

z:O‘ z=3

Along z=0=(0,0) to z=3=(3,0)
y=0 and x varies 0 to 3
dy=0

3 33

[ (x+iy)?(ax+idy) = [xdx =" =9

¢ 0 3 0

also, along z=3=(3,0) to z=3+i=(3,1)
x=3 and y varies from0to 1

dx=0

[ 2%dz=_(x+iy)*(dx+idy) = j(3+ iy)(0+idy) = iJl'(3+ iy)dy :i(3y+iy72j

:i(3+i1j=—1+3i
2 2

[ 2dz=9-143i=1 13
c 2 2
4.Evaluate UZ\Z dz, where C is the square with vertices (0,0), (1,0), (1,1) and

(0,2).
soln:
along the line joining (0,0) to (1,0)

x varies from 0to 1 and y=0 (0,2 £1,1)

1
_[C|z|2 dz :_1[(x2 + yz)(dx+ idy) :szdx :%3
0

0

0

along the line joining (1,0) to (1,1)
x=1andyvariesOto1

1

“dz = 24 y2 i _1 2\idy y_3
Ic|z| dz_!‘(x +y )(dx+|dy)_£(1+y )Idy_l(y+ 3]




along the line joining (1,1) to (0,1)
y =1 and x varies 1to 0

= (5 7)) - o +2) =
! 1

along the line joining (0,1) to (0,0)

x=0andy varies1to 0
0

2 0 y3 —i
dz = 2'd i1 =
.[C|Z| YA '!‘y 1ay =1

therefore,
j|z|2dz=l+ﬂ—ﬂ—l:—l+i
c 3 3 3 3

5.Evaluate 3x+ y)dx + (2y — x)dy, along the parabola y>=x+1.
y y y

1)
soln:
y>=x+1i.e x=y*-1

dx= 2ydy and y varies from 1 to 5

(25)

~|.(3x+y)dx+(2y x)dy = _[S(y —1)+y)2ydy+(2y (y? —1))
(01

(6y +2y? 6y)dy+(2y—y2+1)dy=_|5'(6y3+y2—4y+1)dy

1

»—\'—.U‘I

5

4 3 2 3
=6 Y 4y 235002 omis (§+1—2+1j
473 "2 27 T3 K
_1875 125, (9+2—6j 5875 5 . 5870, 2800
2 3 6 6 6 6 3

6.Evaluate L (Z)*dz, around the circle (i) |z| =1 and (ii) |z -1 =
soln:

(i) |z|=1

or z=e'°,

dz=ie'®d©, 6 varies from 0 to 21t



2z
IC (2)%dz = I e %% e“dg, where Z =e™
0

2” —ig 27[
i e
il e™do=i| —

0

:-[e’iz” —1] =0, because e™" =cos2m -isin2m =1

(ii) [z-1 =1
z-1=e
z=1+ e®, dz=i €°dO and O varies from 0 to 21

2 2

j(z) dz—j(1+e 'g)ue'ede_uj (1+e?7+2e7 Rdo

it i 2z
—|I e +e! +2d9—| —+—+20

I —i 0

= e e +idr —(1-1)=1-1+4zi = 4xi

7.Evaluate L (Xx+2y)dx + (4 —2x)dy, around the ellipse x=4cos©, y=3sin©,

0<6<2n

soln:

x=4c0s06, y=3sin®
dx=-4sin© d6, dy=3cos6 d6

2
L (X+2y)dx + (4—2x)dy = J (4cosd + 6sin@)(—4sinfdO) + (4 —8cosH)3cosod o
0
2
= j(—lesin 0cos 0 — 24sin? @ +12¢0s O — 24cos? 6)d o
0

2r
= [ (-8sin20+12c0s0 - 24)d0 =4c0s 26 +12sin 6 - 246]"
0

=4cosdrx +12sin2x — 487 — (4c0s0+12sin0—-0)=4-487 -4 =
=487

dz
8.Evaluate _[C
Z—a

, around the circle |z—a|=r

25)
9.Evaluate J- (3x + y)dx + (2y — x)dy, along the parabola y=x*+1.

(0.1)



Cauchys' Integral Theorem:
statement:
If a function f(z) is analytic at all points within and on a closed contour c, then

jc f(2)dz=0

Proof:

Let f(z)=u+iv

let c be the closed contour in the region R

consider, Q
jc f(z)dz = j (U +iv)(dx + idy) / \
oP

j (udx —vdy) +i(udy +vdx), we have Green's thm: Ide+Qdy ”(___

ox oy
”[—@ - iujdXdy +1 ”(— - @jdxdy using Greens' theorem

ﬂ( ;Z %jdxdyﬂﬂ(% g:ljolxolyusmgc R eqns.

Consequences of Cauchys' Integral Theorem:

1) If f(z) is analytic over a simply connected region R and z=a and z=b are two
b
points in R, then j f (z)dz is always independent of the path joining the points

z=a and z=b
Proof:

Let C consists of two curves C; along PQ and C; along QP joining z=a at P and z=b
at Qin
the region R, then by Cauchys' theorem

jf(z)dz: j f(2)dz=0

PAQBP

[ f@dz+ [ f(2)dz=0

PAQ QBP



jf(z)dz—j f(2)dz=0

C C,

j f(2)dz = j f (2)dz

G C,

Il) If C1 and C; are two simple closed curves such that C; lies completely within
Ci. Let f(z) is analytic within and on the boundary of the annular region between

Crand C; then | f(2)dz=| f(z)dz
G

S,
Proof: Let C; and C; be two curves such that C; lies completely within C;. Let us
introduce a cut AD connecting A on C: and D on C,.

The curve ABCADEFDA is a simple closed curve and f(z) is analytic inside and on

the boundary of C. Hence by Cauchys' integral theorem jc f(z)dz=0

C1

C

Now the region consists of ABCA, AD, DEFD and DA, then

[ f(20dz=0

ABCADEFDA

j f(z)dz+j f(2)dz + j f(z)dz+j f(z)dz=0

ABCA DEFD

f(z)dz+j/)dz— f(z)dz—j (Adz =0

jf(z)dz—j f(2)dz=0 —> jf(z)dz jf(z)dz

G C, G
Cauchys' Integral Formula
If f(z) is analytic inside and on a simple closed curve C and 'a' is point within C,

then f(a)=— [ g,
2rigz-a

Proof:



Since 'a' is a point within C, consider a circle C: with centre at 'a' and radius r>0
and however small.

f(z) .

The function is analytic inside and on the annular region between C and C;
zZ—a

By the Il consequence of Cauchys' theorem

_[Mdz: Mdz

cz-a zz-a
Ciis the circle |z — a| = r or z-a=re®
z=a+ re'®

dz=rie®®d©

© varies around circle from o to 2m

therefore,

Iﬂdz: Mdz

cZ-a :z-a

_J- f(a+re'9) 40

i0
0 re

2r
=i j f(a+re?)do
0
as r tends to zero, then ' also tends to zero

jﬂdz ny f(a)zfde

lz-a
=i f (@)[0]."
=if(a) 27 = 27i f(a)
01

Generalised of Cauchys' Integral Formula

If f(z) is analytic inside and on a simple closed curve C and 'a’ is point within C,

then f"(a)= 2”'I [ 12 g,

(Z _ a)n+1




Problems:

Z+4

dz, where c is \z+1—i\:2
72 +27+5

1. Evaluate j

soln: cis the circle |z — (—1+1i)| =2 centre at (-1,1) and radius=2

consider,
J- z+4 z+4
z° +22+5 72 +22+1+4

Z+4
dz
(z+1+2i)(z+1-2i)

2=

Cc
z+4

-C[ (z+1)? +4

|

C

J z+4
L(z-(-1-2i))(z-(- 1+2|))

clearly, (-1,-2) is an exterior point of C and (-1,2) in interior point of C.

verification: d[(-1,1),(-1,-2)]=3 and d[(-1,1),(-1,2)]=1

Z+4
J- z+4 j (z—(-1- 2|)
z? +22+5 C z—( 1+2|)
o : : . 1 ¢f(2)
=2z { -1+2i) usingcauchys'integral formula f(a):—_j—dz
2rlnz-a
=27 _'+_2'+4 -, Where f(z) = 2+ 4 .
1+ 2i+1+2i (z—(-1-2i))
i+4
=27 2 | =L (4 +i
m( pr j (4+1)
2. Evaluate [[] -1 dz, where c is |z —i[=2
(z+1) (z-2)

soln:
c is the circle centre at (0,1) and radius=2,

z-1
d
UQ(z—(—l»z(z—Z) ‘



clearly, (-1,0) is inside c and (2,0) is outside ¢
verification: d[(0,1),(-1,0)]=V2 <2 and d[(0,1),(2,0)]= V/5>2

=)
[ﬁ z-1 2)dz:[ﬁ 2-2)
! —

c(Z-(-D)’(z- (z-(-D)°

=27 f (_1) , using Cauchys' integral formula
|
fn(a): n._J. f(Z)n+1 dz
27y, (z —a)
i -1 =27l z-1 -1
=27l = , Where f(z)=—— and f'(z) = )
o) e - -

sinzz?% + coszz2

(z-1(z-2)

dz, where c is |z|=3.

3. Evaluate [ﬁ
C

soln:
c is the circle centre at (0,0) and radius=3,

Lﬁsin 7% +cosxz?
= (z-1)(z-2)
clearly, both (1,0) and (2,0) is inside 'c'
verification: d[(0,0),(1,0)]=1<3 and d[(0,0),(2,0)]= 2<3
consider,

1 _A \ B
(z-D(z-2) z-1 z-2
1=A(z-2)+B(z-1)
A=-1
B=1




(sin;z22+0057rz ) j(sin;rzz+0037zzz)dz

e

m —(sinzz? + cos 'z )d +sin7z22+c057z22
4 (z-1) (z-2)
_27if (1) + 27if (2)

-27i(sinz +cosx) + 2zi(Sin 4z +cos4r)
-271(0-1) + 271(0+1) =4ri

m 1
= (2-D(z-2)

dz

3. Evaluate m

dz, where c is |z|:2.
(2% +1)(z 2)

soln:

Cis the circle whose centre at (0,0) and radius=2

|]j 5 z dz:[f] -\ dz
(22 +D)(z-2) = (z+i)(z-1)(z-2)

Z
~ d
@(z—(—i»(z—i)(z—z) ‘
d[(0,0),(0,-1)]=1<2, d[(0,0),(0,1)]=1<2, d[(0,0),(2,0)]=2=2

i.e, z=-i, z=i are inside Cand z=2 ison C

4 _ A N B N C
(z-NE-)z-2) (z-(-) (@-i) (z-2)
Z2=A(z-1)(z-2)+B(z-(-1D))(z-2)+C(z—(-1))(z-1)
putz = -i,z =1,z =2,we get

1 A 1 2

A=— , A=— ,C=
2(1—2) 2(1—2) 5



1 1 2
21-i) 20-i) s
Lﬂ(z (|))(z -2 %" Lﬁ -y ey - [

1
2(1 )27r|(1) 200

_ 27 47z|

(1 |) 5

27i(l) + = 27r|(1)



Cauchy's Inequality

statement: If f(z) is analytic inside and on the circle 'C' with centre at z=a and
radius 'r' then

|
< Mn—n', where n =0,1,2,3,---and M is a positive number such that
r
|f(2)|<Mforallzin'C'

Proof: We have the generalized Cauchys' integral theorem

g (a)_ n! J‘( f(Z) dz

27“ a)n+1
—>
(@)= | [
27y, (z — a)
InY ¢ [f(2)
= d

| ) :
siMJ' n1+1 rdd, z-a=re’=dz=rie’dd = |dz|=rdb
2r Lr

Mn
27zr 27zr "

thus, | " (a)| < —n'
r

Liouvilles' Theorem

statement: If f(z) is analytic and bounded in the entire complex plane then f(z) is
constant.

Proof:

we have from the Cauchys' inequality
Mn
" (@) <=

entire complex plane r = oo, then

<0, in particular n=1
ie f'(@)=0 => f'(2)=0
therefore, f(z)=constant

Fundamental Theorem of Algebra



statement: Every polynomial equation of degree n>1 with real or complex
coefficients has at least one root.

Proof:
Let f(z)=ao+aiz+azz?+-------- +anz"=0, (an#0) be a polynomial equation of degree n.

suppose, f(z)=0 has no roots, then f(z) 0 for any z

1 . .
(Z)(z)—% is analytic for all z.

also, Q)(z)=%z) —0 as z— oo —> f(z) is bounded for all z

by Liouvilles' Theorem @(z) must be constant, therefore f(z) is a constant function,
which contradicts the fact that f(z) is a polynomial of degree n>1

thus, f(z)=0 for at least a value of z,

f(z) has at least a root.



dz, where c is |z|=2.

4. Evaluate [ﬁ(z D2

soln:
Cis the circle whose centre at (0,0) and radius=2

[ﬁ 5 : dz:[ﬁ - Z_ dz
(27 +1)(z-2) C(z+|)(z—|)(z—2)

z
=Uj . . dz
s(z-()(z-1)(z-2)
d[(0,0),(0,-1)]=1<2, d[(0,0),(0,1)]=1<2, d[(0,0),(2,0)]=2=2

i.e, z=-i, z=i are inside Cand z=2 ison C
Z A B C
; : = T ~t
(z-()z-1)(z-2) (z-(-)) (z-1) (z-2)
2=Az-1)(z-2)+B(z-(-))(z-2)+C(z - (-i))(z i)
putz = -1,z =1,z =2,we get
1 g1 2

= B=— C==
2(1—2) 2(i—2) 5

1 1 2
Lﬂ dz = Uj 20-1) | 2d-1) 5 dz
¢ (z- (I))(Z Nz-2) T @-(1) (z-1) (z-2)

= (11 ) 27i(l) + 2(1l—i) 27i(l) +§27zi(1), f(z)=1, in all cases
_ 27 ﬂ
(1 |) 5

2
5. Evaluate [ﬁ

dz, where c is |z|=1.
z(z +9)

soln:
Cis the circle whose centre at (0,0) and radius=1
consider,

2’ -4 22 -4
|l
= z(z°+9) s z(z+3i)(z- 3|)
now, d[(0,0),(0,0)]=0<1, d[(0,0),(0,-3)]=3>1 and d[(0,0),(0,3)]=3>1
clearly, (0,0) is interior point of C and (0,-3), (0,3) are exterior points of C



m 22—4 dz:[ﬁ Z-—4 - dz
= 2(z°+9) = 2(z+3i)(z - 3i)

22 -4
_ m(z+mxz—3ndz
i
o _ -4 -4
=2 £(0), where f(2)= -5 10 =
. 4 -8l
=27l - — =
(3|)(—3|) 9
. Evaluate m dz where ¢ is |z|=2
4 (z° z)

soln:
Cis the circle whose centre at (0,0) and radius=2
consider,

3z-1 3z-1 3z-1
Dj dz _mz(z [pz(z—l)(z +1) 0z

z=0,z=1,z=—1 are all interior points of C

d[(0,0),(0,0)]=0<2, d[(0,0),(1,0)]=1<2, d[(0,0),(-1,0)]=1<2
3z-1 A B C

2(-D(z+) z z-1 z+1

3z-1=A(z-1)(z+1)+Bz(z+1)+Cz(z-1)

put z =0, we get A=1

Put z =1, we get B=1,

putz = -1, wegetC= -2

[ﬁ 3z-1 —[ﬁ(l_ki_ijdz
=z(z-D(z+1) _c z -1 z+1

=271 T(0)+ 27 f(1)-27i f(-1) each case f(z)=1
=27 + 27 —27i

=27i
22

7. Evaluate m(z+1; 27-2)

dz, where c is |z|=

soln:
Cis the circle whose centre at (0,0) and radius=3
consider,



22

e
[g(z +1)2%(z-2) az

d[(olo)l(_llo)]=1<3l d[(0,0),(Z,O)]=2<3
therefore, (-1,0) and (2,0) are interior points of C
1 A B C
= + +
(z+1)%(z-2) (z+1) (z+1)> z-2
1=A(z+1)(z-2)+B(z-2)+C(z+1)?

-1
utz =-1, B=—
P 3
1
utz =2, C=—=
P 9
equate coefficient of z?, weget 0= A+C
A=C-3
1
[ﬁ 9 le?7g;
(z+1) (z—- ( l) (z +1) (z—2)

[ﬁ_l e” 1 e” 1 e2? "
! 9(z+1) T 3(z+1) 9(z—2)
-1

7z|f(1)-—27z|f(1)+ 27z|f(2) where f (z) = e?



Transformations

Let w=f(z) be the complex function. For every point z in the domain there
corresponds to unique value f(z) is called the image of z. The domain point/curve in
the z-plane gives the corresponding images in the w-plane. The image of every
curve in the z-plane in to its image in the w-plane is called transformation.

In the above transformation the mapping of every curve in the z-plane gives the
image change its position and magnitude in the w-plane.

The transformation is said to be conformal transformation if the angle between the
curves generated at zo in the z-plane does not alter the angle in its image in the w-
plane.

7z~ w:rﬁ

Some elementary transformations:
1. Reflection:

A transformation w=f(z) is said to be reflection if f(z)=Z, i.e every point (x,y) in z-
plane transforms in to (x,-y) in w-plane

2. Translation:

A transformation w=f(z) is said to be reflection if f(z)=z+c, i.e every point (x,y) in z-
plane transforms in to (x+c1,y+cz) in w-plane

3. Magnification and Rotation:

A transformation w=f(z) is said to be reflection if f(re’®)=Re", i.e every point re® in z-
plane transforms in to Re™ in w-plane

4. Inversion:

A transformation w=f(z) is said to be reflection if f(re‘9)=§e‘9, i.e every point re®® in z-

. S 9.
plane transforms in to ;e'e in w-plane.

Problems:



: 1 . :
1. show that the transformation f(z)==transforms a circle to a circle or to a
z

straight line.
soln:
1 1
W==—0r z=—
z w
X+iy = .
u-+iv
. . 1 u-—iv
given x+iy = X ——
u+iv u-—iv
_u-iv u Y

= = —1
u?+v: ui+v: o ui VA
equating real and imaginary parts

(o U = v
u? +v2’ u? +v?

consider, the standard eqgn. of circle in z-plane

X>+y?+2gx+2gy+c=0

2 2
u v u v
+| - + 2 +2f] - +c=0
(u2+v2J ( u2+v2j g(u2+v2j ( u2+v2j

multiply by (u2 V2 )2

u? +v? +Zg(u2 +v2)u +2f (u2 +v2)v+c(u2 +v2)2 =0
dividing by (u2 +v2)

1+Zgu+2fv+c(u2+v2) 0

which represent a circle if c#0 and straight line if c=0



Special Transformations:

1. Discuss the transformation w=z2.

dw o .
soln:d— =2z, the function is analytic for all values of z
z

consider, w=z>

u+iv=(x+iy)?

u+iv=x2-y2+i2xy

comparing u= x>-y?, v=2xy

case(i): when x=k(constant) represents the family of lines parallel to y-axis
u= k2-y%---(1), v=2ky----(2)

by eliminating k between (1) and (2)

squaring (2) v2=4k?y?, substituting in (1)

2
2 \4

e

4k*u = 4k* —v*

v =4kt -4kt
v:i=—4k*(u—-k*)——=—(3)

u==rk

comparing with the parabola (y-k)?=4a(x-h) studied in PUC
eqn.(3), represents parabola symmetric about a line parallel to x-axis.

thus, the lines in the z-plane parallel to x-axis maps on to the parabolas
symmetric about the line parallel to y-axis.

Y-axis
Y-axis
Z-plane T W-plane
T
F‘\
5) X-axis
—)
[

p—




case(ii): when y=p(constant) represents the family of lines parallel to X-axis
u= x2-p%---(1), v=2xp----(2)

eliminating p between (1) and (2)

vi=2x2p?

substitute in(1),

4pzu=vz—4p4
v =4p* +4k*u
2 _ 4.2 2
vi=4p (u+k’)———-03)

comparing with the parabola (y-k)?=4a(x-h) studied in PUC
eqn.(3), represents parabola symmetric about a line parallel to x-axis.

thus, the lines in the z-plane parallel to x-axis maps on to the parabolas

symmetric about the line parallel to y-axis.

Y-axis
z-plane

X-axis X-axis

1. Discuss the transformation w=e?.

soln:@ = ¢, the function is analytic for all values of z
dz

consider, w=e?

u+iv=e*x

utiv=eXeV

u+iv=e*(cosy+isiny)

u=e*cosy, y=e’siny



case(i):

let x=k(constant) the lines parallel to y-axis

u=ekcosy, y=eksiny

squaring and adding, we get

u2_|_V2=e2k

represent the circle in the w-plane
Y-axis

X-axis X-axis

case(ii):
let y=p(constant) the lines parallel to y-axis
u=e*cosp, v=e*sinp

u
—=cotp
v
u=vcotp
y-axis
y-axis —>

X-axis

X-axis

In this transformation w=e?, the line parallel to y-axis in the z-plane

mapping on to circle whose centre at origin in the w-plane and the line parallel

to x-axis in the z-plane mapping on to line in the w-plane through origin.



3. Discuss the transformation w=sinz.

soln:
w=sinz
dw
— =C0SZ,
dz
dw T 37
—=0forz=—,—
dz 2 2
L T 3
the function is conformal for all values of z except at —,7

put w=u+iv and z=x+iy
u+iv=sin(x+iy)
=sinx cos(iy)+cosx sin(iy)
=sinx coshy + i cosx sinhy
u= sinx coshy, v= cosx sinhy
eliminating 'x'

=SINX, — =COS X
coshy sinhy
squaring and adding

u? v2

=1

VLY,
cosh“y sinh“y
for y=k(constant) represent the line parallel to x-axis

u? V2

+
cosh?k  sinh?k

b*  [a®-b* [cosh®k —sinh®k 1
eccentricity,e=,(1-— = — = = =sechk

=1,, represents ellipse whose centre=(0,0)

a? a cosh?k ~ coshk

foci=(+ae,0)=( +1,0)

thus, the family of lines parallel to x-axis in the z-plane mapping on to ellipse in the
w-plane whose centre at (0,0) and focus (+1,0)

y-axis
x-axis \
(-1.0) (1.0
u‘/

also,

eliminating 'y’



Y _cosh Y, V' _sinh y

sin x COS X
squaring and subtracting
u? V2

- =1
sin®x  cos? x
let x= A, is the line parallel to y-axis.

u? V2

sin?4  cos’ A

=1, represents hyperbola whose centre=(0,0)

. b2 a’?+b%  [sin®A+cos® A 1
eccentricity,e =,[1+— = — = — =——=C0SecA
a a sin“ A sinA

foci=(+ae,0)=( £1,0)

e m VRE

(4g] : [ (9

4. Discuss the transformation w=cosz.

soln:
W=C0SZ
dw .
o =-sinz,
d—W =0 forz=0, 7
dz
the function is conformal for all values of z except at z=0, =
put w=u+iv and z=x+iy
u+iv=cos(x+iy)
=cosx cos(iy)+sinx sin(iy)
=cosx coshy + i sinx sinhy
u= cosx coshy, v=sinx sinhy
eliminating 'x'

=Sinx

=COSX, —
coshy sinhy

squaring and adding

u? V2

—+——=1, represents ellipse whose centre=(0,0)
cosh“y sinh“y




b> |a®-b*> [cosh®y—sinh?y 1
eccentricity,e=,/1-— = = = =sechy
2 2 2
a a cosh®y coshy

foci=(+ae,0)=( +1,0)
also,
eliminating 'y’

Y _cosh Y, V' _sinh y

sin x COS X
squaring and subtracting
u? V2

- =1, represents hyperbola whose centre=(0,0)

sin?x  cos?x
b> [a®+b® [sin®x+cos’x 1
eccentricity,e =,[1+— = s = — = —— = COSEecx
a a sin? x sin x

foci=(+ae,0)=( +1,0)

thus, the family of lines parallel to y-axis in the z-plane mapping on to hyperbola in
the w-plane whose centre at (0,0) and focus (+1,0).

1 1
5. Discuss the transformation w=5(z + —j .
Z

soln:

23)
w=—|z+=
2 Z

dw 1 1
—=2|1-=
dz 2 z
d—W =0forz==1
dz
therefore the function is conformal at all points except at z=+1
Let w=u+iv and z=re'®
then,

Utiv= l(rei‘g + 1e“gj
2 r

=%(r(cos¢9+ isind) +%(cos€—isin9))

=l(r +1jcose+ il(r —ljsine
2 r 2 r



comparing, we get

u=l r+1 cosé@ v=l(r—l sin@ - (1)
2 r 2 r

Cas(i):
Eliminating © in (1) and (2), we have

=C0Ss4, =siné@

_u _u
) )
r+= “lr—=
2 r 2 r
squaring and adding, we get

u? V2

+
(i) it
r+-= “lr-=
4 r 4 r

this equation represents ellipse whose centre=(0,0) when r>1.

the circle |z|=r in the z-plane maps on to ellipse in the w-plane.
Case (ii):

also, eliminate 'r' between (1) and (2)

u 1 1 % 1 1
——==|r+=| —=={r—=
cosé 2( rj sin@ 2( rj

u? v 1Y o1 1Y
== | = | == T—=
cos“@d sin‘@ 4 r 4 r

u? V2

cos?6 sin20
which represents hyperbola whose centre=(0,0) and eccentricity

h? sin% o cos’ @ +sin’ @ 1
1+—2= 1+ 5 = 5 =
a cos“ @ cos“ @ cosé
foci=(+ae,0) = (+1,0)

i.e Every constant angle ©=k in the z-plane is mapping on to the hyperbola in the w-
plane whose centre=(0,0) and foci=(+1,0).

y-axis . > -axis
0 X-axis
X-axis
0

e
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