Dr.D Radhakrishna
Associate Professor of Mathematics
Vijaya College, RV Road, Bangalore-04

TOPIC: NORMAL SUBGROUPS

Defn: A subgroup H of a group is said to normal subgroup of G iff ghg $^{-1} € \mathrm{H}$, $\forall g € G$ and $h € H$.
Note: If \mathbf{H} is a normal subgroup of a group \mathbf{G}, then it is denoted by $\mathbf{H} \Delta \mathbf{G}$
EX-1: we have $\mathrm{H}=\{-1,1\}$ is a subgroup of a group $\mathrm{G}=\{-1,1, \mathrm{i},-\mathrm{i}\}$ under regular multiplication,
Then, $-1(-1) 1=1 € H, 1(-1)(-1)=1 € H,-1(1) 1=-1 € H, 1(1)(-1)=-1 € H$ $-i(-1) i=-1 € H, i(-1)(-i)=-1 € H,-i(1)(i)=1 € H, i(1)(-i)=1 € H$
Which proves $\mathrm{H} \Delta \mathrm{G}$
Alternate definitions of normal subgroup:
I.A subgroup H of a group is a normal subgroup of G iff $\mathrm{gHg}^{-1}=\mathrm{H}$

Proof:
Let H be a subgroup of G
\Rightarrow ghg $^{-1} € \mathrm{H}$,
let $x € \mathrm{gHg}^{-1}$
such that $\mathrm{x}=\mathrm{ghg}^{-1}$ for some h€ H
$\Rightarrow \mathrm{x} \in \mathrm{H}$
thus, $\mathrm{gHg}^{-1} \mathrm{CH}$--(1)
further, replace g by g^{-1}
$\mathrm{g}^{-1} \mathrm{H}\left(\mathrm{g}^{-1}\right)^{-1} \mathrm{CH}$
i.e $\mathrm{g}^{-1} \mathrm{HgCH}$
pre-operate g and post-operate g^{-1} both the sides
(g) $\left.\mathrm{g}^{-1} \mathrm{Hg}^{-1}\right) \mathrm{C} \mathrm{gHg}^{-1}$
$\mathrm{H} \mathrm{CgHg}^{-1}$
from (1) and (2)
$\mathrm{gHg}^{-1}=\mathrm{H}$
II. A subgroup H of a group is a normal subgroup of G iff every right coset is a left coset.
Proof:
Let H be a subgroup of G
$\Rightarrow \mathrm{gHg}^{-1}=\mathrm{H}$,

```
post operate g
    \(\mathrm{gHg}^{-1} \mathrm{~g}=\mathrm{Hg}\)
    \(\mathrm{gH}=\mathrm{Hg}\)
```

i.e every left coset is right coset
conversely,
suppose, every left coset is right coset of H in G
$\mathrm{Hg}=\mathrm{xH}$
clearly, $\mathrm{g} € \mathrm{Hg} \Longrightarrow \mathrm{g} € \mathrm{xH} \quad(\mathrm{Hg}=\mathrm{xH})$
now, $g € x H$ and $g € g H$
$\mathrm{gH}=\mathrm{xH}$ (since any to left cosets are either identical or disjoint)
$\Longrightarrow \mathrm{gH}=\mathrm{Hg}$
$\mathrm{gHg}^{-1}=\mathrm{H}$
$\mathbf{H} \Delta \mathbf{G}$
III. A subgroup H of a group is a normal subgroup of G iff product of any two right(left) coset is a right(left) coset.
Proof:
Let H be a subgroup of G
\Rightarrow Let Ha and Hb be to right cosets of H in G
consider, $\mathrm{Ha} . \mathrm{Hb}=\mathrm{H}(\mathrm{aH}) \mathrm{b}$

$$
\begin{aligned}
& =\mathrm{H}(\mathrm{Ha}) \mathrm{b} \\
& =\mathrm{HH}(\mathrm{ab}) \text { is a right coset }
\end{aligned}
$$

conversely,
product of any two right coset is a right coset
let Hx and Hx^{-1} be to right cosets of H in G
$\mathrm{Hx} \cdot \mathrm{Hx}^{-1}$ is again a right coset
$H x \cdot H x^{-1}=H$, since H is both right coset and left coset
let $h_{1} x^{2} x_{2}^{-1} € H$
$\mathrm{xh}_{2} \mathrm{x}^{-1} €\left(\mathrm{~h}_{1}\right)^{-1} \mathrm{H}$
$x_{2} x^{-1} € H$
H Δ G

Theorems on Normal Subgroups:

Thm1: The product of any two normal subgroups is a normal subgroup
Proof: Let H and K be two normal subgroups of G
Define, HK=\{hk/h€H, k€K\}
Let $g € G$, then ghg $^{-1} € H$ where $h € H$, since H is normal in G
$\mathrm{gkg}^{-1} € K$, where $\mathrm{k} € K$, since K is normal in G
now, ghg $^{-1} \mathrm{gkg}^{-1}=\mathrm{gh}\left(\mathrm{g}^{-1} \mathrm{~g}\right) \mathrm{kg}^{-1}=\mathrm{ghkg}^{-1} € \mathrm{HK}$
by defn. of normal subgroup
HK is normal subgroup in G.
Thm2: The intersection of two normal subgroups is a normal subgroup
Ans: Let H and K be two normal subgroups of a group G
Clearly, $\mathrm{H} \cap \mathrm{K} \neq \varnothing$ as they are subgroups of G
clearly, $\mathrm{H} \cap \mathrm{K}$ is a subgroup of G (proved in 2 nd semester)
Let $\mathrm{g} € \mathrm{G}$ and $\mathrm{h} € \mathrm{H} \cap \mathrm{K}$
ghg $^{-1} € H$, where h€H
and ghg $^{-1} € K$, where h€K
\Longrightarrow ghg $^{-1} € \mathrm{H} \cap \mathrm{K}$
which proves that $\mathrm{H} \cap \mathrm{K}$ is normal in G .
Thm3: Let H be a subgroup of G and K is normal subgroup of G, then $H \cap K$ is a normal subgroup of \mathbf{H}

Proof: Clearly, $\mathrm{H} \cap \mathrm{K} \neq \varnothing$ as they are subgroups of G
clearly, $\mathrm{H} \cap \mathrm{K}$ is a subgroup of G (proved in 2nd semester)
Let $g € H$ and $h € H \cap K$
ghg ${ }^{-1} € K$ as K is normal in G
gh€H, by closure axiom
ghg $^{-1} € H$, as $^{-1} € H$
ghg $^{-1} € \mathrm{H} \cap \mathrm{K}$
which proves that $\mathrm{H} \cap \mathrm{K}$ is normal in H .
Thm4: Let H be a normal subgroup of G and K be any subgroup of G, then HK is a subgroup of \mathbf{G}

Proof:
Define, $\mathrm{HK}=\{\mathrm{hk} / \mathrm{h} € \mathrm{H}, \mathrm{k} € K\}$
Clearly, HK $=\varnothing$
Let $x, y € H K$, where $x=h_{1} k_{1}$ and $y=h_{2} k_{2}$
Now, $x y^{-1}=h_{1} \mathrm{k}_{1}\left(\mathrm{~h}_{2} \mathrm{k}_{2}\right)^{-1}$
$=h_{1} k_{1} k_{2}{ }^{-1} h_{2}{ }^{-1}$
$=h_{1}\left(\mathrm{k}_{1} \mathrm{k}_{2}^{-1}\right) \mathrm{h}_{2}^{-1}$
$=h_{1} k_{3} h_{2}{ }^{-1}$, where $k_{1} k_{2}{ }^{-1}=k_{3} € K$
$=h_{1} \mathrm{k}_{3} \mathrm{~h}_{2}{ }^{-1}\left(\mathrm{k}_{3}{ }^{-1} \mathrm{k}_{3}\right)$
$=h_{1}\left(\mathrm{k}_{3} \mathrm{~h}_{2}{ }^{-1} \mathrm{k}^{-1}\right) \mathrm{k}_{3}$
$=h_{1} h_{3} k_{3}$, where $k_{3} h_{2}{ }^{-1} k_{3}{ }^{-1}=h_{3} € H$ as H is normal in G
$=h_{4} k_{3} € H K$, where $h_{1} h_{3}=h_{4} € H$
Thus, HK is a subgroup of G.

CENTRE OF A GROUP

Defn: Let G be a group. the set of Z of elements of G commutes with every elements of G is called centre of G .
i.e $Z=\{z € G / x z=z x \forall x € G\}$

Thm: Centre of a group G is a normal sub-group of G

Proof: Let $Z=\{z € G / x z=z x \forall x € G\}$ is the centre of G
ley $z_{1}, z_{2} € Z$, so that $x z_{1}=z_{1} x$ and $x z_{2}=z_{2} x$
consider, $\mathrm{xz}_{2}=\mathrm{z}_{2} \mathrm{X}$

$$
\begin{gathered}
\left(x z_{2}\right) z_{2}^{-1}=z_{2} x z_{2}^{-1} \\
x\left(z_{2} z_{2}^{-1}\right)=z_{2} x z_{2}^{-1} \\
x e=z_{2} x z_{2}^{-1} \\
x=z_{2} X z_{2}^{-1}
\end{gathered}
$$

$$
z_{2}^{-1} x=x z z^{-1}-------(1) \text { by pre operating } z_{2}^{-1}
$$

$z_{12} z^{-1} x=z_{1} x z_{2}^{-1}$ using (1)
$z_{1} z_{2}{ }^{-1} x=x z_{1} z_{2}{ }^{-1}$, since $x z_{1}=z_{1} x$
$\Longrightarrow \mathrm{z}_{122}{ }^{-1} € Z$
therefore Z is a sub-group of G
also, $\mathrm{xzx}{ }^{-1}=\mathrm{zxx}^{-1}$ as $\mathrm{xz}=\mathrm{zx}$

$$
=z e=z € Z
$$

thus Z is normal subgroup of G

NORMALIZER OF A GROUP

Defn: Let G be a group and ' a ' be an element of G. The set of elements of G commutes ' a ' is called normalizer or centralizer of an element ' a ' and it is denoted by Na .
i.e $N a=\{x \in G / x a=a x \forall a € G\}$

QUOTIENT GROUP

Let G be a group and H be the normal subgroup of G. The set of all cosets(both left cosets and right cosets) of H in G is called quotient set. This set is denoted by $\mathrm{G} \mid \mathrm{H}$
i.e $\mathrm{G} \mid \mathrm{H}=\{\mathrm{Ha} / \mathrm{a} € \mathrm{G}\}$

Thm: The set $\mathbf{G} \mid \mathrm{H}$ of all cosets of \mathbf{H} in \mathbf{G} is a group under the composition $\mathrm{HaHb}=\mathrm{Hab} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$
Proof:
(i) Closure axiom:
let $\mathrm{Ha}, \mathrm{Hb} € G \mid \mathrm{H}$, then $\mathrm{HaHb}=\mathrm{Hab} G \mathrm{G} \mid \mathrm{H}$
(ii) Associative axiom:
let $\mathrm{Ha}, \mathrm{Hb}, \mathrm{Hc} € \mathrm{G} \mid \mathrm{H}$, then $\mathrm{Ha}(\mathrm{HbHc})=\mathrm{HaHbc}=\mathrm{Habc}$
also, (HaHb)Hc=HabHc=Habc
(iii) Identity axiom:
$\mathrm{He}=\mathrm{H}$ is the identity element in $\mathrm{G} \mid \mathrm{H}$
(iv) Inverse axiom:
let $H a € G \mid H$ be any element, then $H a^{-1} € G \mid H$ such that
$\mathrm{HaHa}^{-1}=\mathrm{Haa}^{-1}=\mathrm{He}=\mathrm{H}$, then Ha^{-1} is inverse of Ha .
therefore, $\mathrm{G} \mid \mathrm{H}$ is a group
Defn: Let G be a group and H be the normal subgroup of G, the quotient set $G \mid H$ of all cosets is a group under the composition $\mathrm{HaHb}=\mathrm{Hab}$ is called quotient group.

Problems:

1. Let h and K be two normal subgroups of G such that $H \cap K=\{e\}$ then show that every element of H commutes with every element of K.
Soln: let h€H and k€K be arbitrary
then we shall prove that $h k=k h$
H is normal in $\mathrm{G} \longrightarrow \mathrm{kh}^{-1} \mathrm{k}^{-1} \mathrm{€H}$
$h^{2} h^{-1} \mathrm{k}^{-1} € \mathrm{H}$, by closure axiom in H
K is normal in $\mathrm{G} \longrightarrow \mathrm{hkh}^{-1} € \mathrm{~K}$
$h k h^{-1} k^{-1} € K$, by closure axiom in K
thus, $h^{k} h^{-1} \mathrm{k}^{-1} € \mathrm{H} \cap \mathrm{K}$
but $\mathrm{H} \cap \mathrm{K}=\{\mathrm{e}\}$
therefore, $\mathrm{hkh}^{-1} \mathrm{k}^{-1}=\mathrm{e}$
$\mathrm{hkh}^{-1}=\mathrm{k}$, by post operating k
$\mathrm{hk}=\mathrm{kh}$, by post operating h

2.Prove that every quotient group of an abelian group is abelian

soln:
Let $\mathrm{G} \mid \mathrm{H}$ be a quotient group of an abelian group G
Ha, Hb are any two elements of $\mathrm{G} \mid \mathrm{H}$
$\mathrm{HaHb}=\mathrm{Hab}=\mathrm{Hba}$, as G is abelian

$$
=\mathrm{HbHa}
$$

therefore, $\mathrm{G} \mid \mathrm{H}$ is an abelian group.

HOMOMORPHISM OF GROUPS

Defn: Let $(G, *)$ and $\left(G^{\prime}, o\right)$ be two groups, the mapping $f:(G, *) \rightarrow\left(G^{\prime}, o\right)$ is said to be homomorphism of the group G in to G^{\prime} if $f(a * b)=f(a) \circ f(b), \forall a, b € G$.
Ex:

1. Let $(Z,+)$ and $\left(Q_{0}, \cdot\right)$ be the groups where Z is set of integers and Q_{0} is the set of rationals excluding 0 . The mapping $f:(Z,+) \rightarrow\left(Q_{0}, \cdot\right)$ defined by $f(a)=2^{a}, \forall a € Z$, verify f is a homomorphism.
soln:
let $a, b € Z$,
$f(a+b)=2^{a+b}=2^{a} \cdot 2^{b}=f(a) . f(b)$
therefore f is a homomorphism.
2. Show that the mapping $f:(R,+) \rightarrow\left(R^{+}, \cdot\right)$ defined by $f(x)=e^{x}, \forall x \in R$, where R^{+}is the set of positive numbers. Show that f is a homomorphism.
soln:
let $x, y € R$,
$f(x+y)=e^{x+y}=e^{x} . e^{y}=f(x) \cdot f(y)$
therefore f is a homomorphism.
3. Let $(G,+)$ be a group $w r t$ addition. The mapping $f:(G,+) \rightarrow(G,+)$ defined by $f(x)=x+3, \forall x € G$.
Soln:
let $x, y € G$,
$f(x+y)=x+y+3$
$=x+3+y$
$\neq f(x)+f(y)$
therefore f is not a homomorphism.
Thm:1. Let $\mathrm{f}: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ be homomorphism from the group \mathbf{G} in to \mathbf{G}^{\prime}, then
(i) $f(e)=e^{\prime}$, where e and e^{\prime} are the identities in G and G^{\prime}
(ii) $f\left(a^{-1}\right)=[f(a)]^{-1}, \forall a € G$

Proof:
(i) $f(a) e^{\prime}=f(a)$, by identity axiom in G^{\prime}

$$
\begin{align*}
& f(a) e^{\prime}=f(a e)=f(a) f(e), f \text { is a homomorphism } \\
& e^{\prime}=f(e) \tag{1}
\end{align*}
$$

(ii) consider, $f(a) f\left(a^{-1}\right)=f\left(a a^{-1}\right)=f(e)=e^{\prime}$
also, $f\left(a^{-1}\right) f(a)=f\left(a^{-1} a\right)=f(e)=e^{\prime}$
from (1) and (2) $f(a)$ and $f(a)^{-1}$ are inverses to each other
therefore, $[f(a)]^{-1}=f\left(a^{-1}\right)$.

Thm:2. Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be homomorphism from the group \mathbf{G} in to \mathbf{G}^{\prime}, then the set $\mathrm{f}(\mathrm{G})=\{\mathrm{f}(\mathrm{g}) / \forall \mathrm{g} € \mathrm{G}\}$ is a subgroup of \mathbf{G}^{\prime}.

Proof:
let $x, y € f(G)$ such that $x=f\left(g_{1}\right), y=f\left(g_{2}\right)$, where g_{1} and g_{2} are in G
consider, $x y^{-1}=f\left(g_{1}\right)\left[f\left(g_{2}\right)\right]^{-1}$

$$
=f\left(g_{1}\right) f\left(g_{2}^{-1}\right) \text {, using Thm:1 }
$$

$$
=\mathrm{f}\left(\mathrm{~g}_{1} \mathrm{~g}_{2}{ }^{-1}\right) \text {, since } \mathrm{f} \text { is a homomorphism }
$$

$$
=f\left(\mathrm{~g}_{1} \mathrm{~g}_{2}{ }^{-1}\right) € f(\mathrm{G}) \text { as } \mathrm{g}_{1} \mathrm{~g}_{2}{ }^{-1} € G
$$

therefore, $\mathrm{f}(\mathrm{G})$ is a subgroup of G^{\prime}

Note: $f(G)$ is called the homomorphic image of G
Thm:3. Let $\mathrm{f}: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ be homomorphism from the group \mathbf{G} in to \mathbf{G}^{\prime} and \mathbf{H} is a subgroup of G then $f(H)$ is a subgroup of \mathbf{G}^{\prime}.

Proof:
Define $f(H)=\{f(h) / \forall h € H\}$ is clearly nonempty set
let $x, y \in f(H)$ such that $x=f\left(h_{1}\right), y=f\left(h_{2}\right)$, where h_{1} and h_{2} are in H
consider, $x y^{-1}=f\left(h_{1}\right)\left[f\left(h_{2}\right)\right]^{-1}$
$=f\left(h_{1}\right) f\left(h_{2}^{-1}\right)$, using Thm:1
$=f\left(h_{1} h_{2}{ }^{-1}\right)$, since f is a homomorphism
$=f\left(h_{1} h_{2}{ }^{-1}\right) € f(H)$ as $h_{1} h_{2}{ }^{-1} € H$
therefore, $f(H)$ is a subgroup of G^{\prime}
Thm:4.The homomorphic image of an abelian group is abelian.
Proof:
Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be homomorphism from the group G in to G^{\prime} and G is abelian.
we have, $f(G)$ is homomorpmic image of G
let $x, y \in f(G)$ such that $x=f\left(g_{1}\right), y=f\left(g_{2}\right)$, where g_{1} and g_{2} are in G
consider, $x y=f\left(g_{1}\right) f\left(g_{2}\right)$

$$
\begin{aligned}
& =f\left(g_{1} g_{2}\right) \text {, as } f \text { is a homomorphism } \\
& =f\left(g_{2} g_{1}\right), G \text { is abelian } \\
& =f\left(g_{2}\right) f\left(g_{1}\right) \\
& =y x
\end{aligned}
$$

therefore $f(G)$ is abelien.
Thm:5. Let $\mathrm{f}: \mathbf{G} \rightarrow \mathbf{G}$ be homomorphism from the group \mathbf{G} in to itself and \mathbf{H} is a cyclic subgroup of G, the $f(H)$ is also cyclic subgroup of G.

Proof:
let $\mathrm{H}=$ <a>
we shall prove that $f(H)$ is also cyclic generated by $f(a)$
let $x=a^{m} € H, y=f(x) € f(H)$
case(i): m is any +ve integer
$y=f\left(a^{m}\right)$
=f(a.a.a.a.....m times)
$=f(a) f(a) f(a) m$ times, because f is a homomorphism
$=[f(a)]^{m}$,
case(ii): m is any -ve integer
let $m=-k$

```
\(y=f\left(a^{-k}\right)\)
    \(=f\left(a^{-1}\right)^{k}\)
    \(=\left[f\left(a^{-1}\right)\right]^{k}\)
    \(=f\left(a^{-1}\right) \cdot f\left(a^{-1}\right) \cdot f\left(a^{-1}\right) \cdot f\left(a^{-1}\right) \ldots \cdot k\) times
    \(=f\left(a^{-1} a^{-1} a^{-1} a^{-1} \ldots . . . k\right.\) times \()\)
    \(=f\left(a^{-1}\right)^{k}\)
    \(=[f(a)]^{-k}\)
thus, \(f(H)=<f(a)>\)
```

i.e $f(H)$ is cyclic generated by $f(a)$

