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II SEMESTER GROUPS 

 

Defn of a Group: A non-empty set X with an operation ∗ is a group if it satisfies (i) 

Closure axiom (ii) Associative axiom (iii) Identity axiom and (iv) Inverse axiom. 

OR 

 Defn of a Group: An algebraic structure (X, ∗) is a group if it satisfies (i) Associative 

axiom (ii) Identity axiom and (iii) Inverse axiom. 

Defn of a Semi-Group: A nonempty set X with an operation ∗ satisfying closure and 

associative axioms is a semigroup. 

Abelian Group: A non-empty set X with an operation ∗ is an abelian group if it 

satisfies (i) Closure axiom (ii) Associative axiom (iii) Identity axiom (iv) Inverse axiom 

and (v) commutative axiom. 

EX: 1. (N,+) is a semi-group but not a group. 

       2. (N,∙) is a semi-group but not a group. 

       3. (Z,+) is an abelian group 

       4. (Z,∙) is a semi-group but not a group. 

       5. (Q,+), (R,+), (C,+) are all abelian groups, 

       6. (Q,∙), (R,∙), (C,∙) are semi-groups but not groups, these are groups by deleting 0 

in the set. 

Problems on Groups: 

1. Prove that the set {2n/n€Z} is a group w r t multiplication. 

soln: Let G={2n/n€Z} 

closure axiom:  

let 2x, 2y€G 

2x 2y=2x+y€G 

Associative axiom:  

let 2x, 2y, 2z€G 

    2x(2y 2z)= 2x(2y+z)=2x+y+z 

    (2x2y) 2z=2x+y2z=2x+y+z 

Identity axiom: 

 1=20 is identity in G 

Inverse axiom: 



 

 

 ∀2x€G, then 2-x is the inverse of 2x. 

therefore, (G,∙) is a group. 

2. Prove that the set {a+ √𝟐𝐛/a,b€R} is an abelian group w r t addition. 

soln:  

let G={a+ √2b/a,b€R} 

closure axiom:  

let a1+√2b1, a2+√2b2€G 

(a1+√2b1)+( a2+√2b2)= a1+a2+√2 (b1+b2) €G 

Associative axiom:  

a1+√2b1, a2+√2b2, a3+√2b3 €G 

a1+√2b1+(a2+√2b2+ a3+√2b3)= a1+√2b1+(a2+ a3+√2 (b2+b3) 

                                                     =a1+a2+a3+√2(b1+b2+b3) €G 

(a1+√2b1+ a2+√2b2)+( a3+√2b3)= (a2+ a2+√2 (b1+b2)+ ( a3+√2b3) 

                                                        = a1+a2+a3+√2(b1+b2+b3) €G 

Identity axiom: 

0=0+√2 0 is identity in G 

Inverse axiom: 

for every a+√2b€G, -a-√2b€G is the inverse of a+√2b€G 

commutative axiom: 

let a1+√2b1, a2+√2b2€G 

  (a1+√2b1)+ (a2+√2b2)=a1+a2+√2(b1+b2) = a2+a1+√2(b2+b1)= (a2+√2b2)+ (a1+√2b1) 

therefore, (G,+) is an abelian group. 

3. Prove that the set of matrices in the form /
   

R
  

  
  

cosθ sinθ

-sinθ  cosθ
 is  group w r t 

matrix multiplication. 

soln: let M= /
   

R
  

  
  

cosθ sinθ

-sinθ  cosθ
 

closure axiom: 

let A=
1 1

1 1

    
 
 

cosθ sinθ

-sinθ  cosθ
, B=

2

2 2

    
 
 

2cosθ sinθ

-sinθ   cosθ
€M 



 

 

now, AB=
1 1

1 1

    
 
 

cosθ sinθ

-sinθ  cosθ

2

2 2

    
 
 

2cosθ sinθ

-sinθ   cosθ
=

1 2 2

2 2 1

cos

cos

   sin

sin

+ 
 

− 

2 1 2 1 1

1 1 2 1 2

cosθcosθ -sinθsinθ θcosθ θsinθ

- θcosθ θsinθ   cosθcosθ -sinθsinθ
=

1 2 1 2

1 2 1 2

+ )   + )

+ ) + )

 
 
 

cos( θ θ sin( θ θ

-sin( θ θ   cos( θ θ
€M 

 

Associative axiom: 

let A=
1 1

1 1

    
 
 

cosθ sinθ

-sinθ  cosθ
, B= 

2 2

2 2

    
 
 

cosθ sinθ

-sinθ   cosθ
, C=

3 3

3 3

    
 
 

cosθ sinθ

-sinθ   cosθ
€M 

A(BC)= 
1 1

1 1

    
 
 

cosθ sinθ

-sinθ  cosθ

2 3 2 3

2 3 2 3

+ )   + )

+ ) + )

 
 
 

cos( θ θ sin( θ θ

-sin( θ θ   cos( θ θ
=

1 2 3 1 2 3

1 2 3 1 2 3

+ )   + )

+ ) + )

 
 
 

cos( θ +θ θ sin( θ +θ θ

-sin( θ +θ θ   cos( θ +θ θ
=(AB)C 

Identity axiom: 

0 0 1 0
M

0 0 0 1

         
=    

   

cos sin

-sin   cos   
is an identity element

 

 

Inverse axiom: 

let A=
1 1

1 1

    
 
 

cosθ sinθ

-sinθ  cosθ
€M 

A-1=
adjA

A
=

1 1

1 1

)

)

)    - 
 
 

cos( θ sin( θ

sin( θ )    cos( θ
 =

1 1

1 1

)

)

)     
 
 

cos( -θ sin( -θ

-sin( -θ )    cos( -θ
€M 

therefore, M is a group w r t matrix multiplication. 

 

4. Prove that the set of complex numbers of the form {cosϴ+i sinϴ/ϴ€R} is a group 

w r t multiplication. 

soln: let C={cosϴ+i sinϴ/ϴ€R} 

closure axiom: 

let cosϴ1+i sinϴ1, cosϴ2+i sinϴ2€C 

(cosϴ1+i sinϴ1)(cosϴ2+i sinϴ2)= cos(ϴ1+ ϴ2)+i sin(ϴ1+ ϴ2)€C, using Demoivrs' thm. 

Associative axiom: 

let cosϴ1+i sinϴ1, cosϴ2+i sinϴ2, cosϴ3+i sinϴ3€C 



 

 

[(cosϴ1+i sinϴ1)(cosϴ2+i sinϴ2)](cosϴ3+i sinϴ3) 

= [cos(ϴ1+ ϴ2)+i sin(ϴ1+ ϴ2)] (cosϴ3+i sinϴ3)= cos(ϴ1+ ϴ2+ ϴ3)+i sin(ϴ1+ ϴ2+ ϴ3) 

also, (cosϴ1+i sinϴ1)[(cosϴ2+i sinϴ2)(cosϴ3+i sinϴ3)] 

        = (cosϴ1+i sinϴ1) [cos(ϴ2+ϴ3)+i sin(ϴ2+ϴ3)]= cos(ϴ1+ ϴ2+ ϴ3)+i sin(ϴ1+ ϴ2+ ϴ3) 

Identity axiom: 

1=cos0+isin0€M is identity 

Inverse axiom: 

for every cosϴ+i sinϴ€M 

inverse is cos(-ϴ)+i sin(-ϴ)€M 

therefore, C is a group w r t matrix multiplication. 

 

5. Prove that the set of integers Z is an abelian group w r t ∗ defined by 

a∗b=a+b+3,∀a,b€Z 

soln: 

closure axiom: 

let a,b€Z, a∗b=a+b+3€Z 

Associative axiom: 

let a,b,c€Z 

a∗(b∗c)=a∗(b+c+3)=a+b+c+3+3=a+b+c+6 

(a∗b)∗c=(a+b+3) ∗c =a+b+3+c+3=a+b+c+6 

Identity axiom: 

∀a€Z and e be identity 

then by identity axiom a∗e=a 

                                         a+e+3=a 

                                        e+3=0 

                                        e=-3€Z is identity 

Inverse axiom: 

∀a€Z, let a-1 be the inverse of a 

by inverse axiom 

a∗a-1=e 

a+a-1+3=-3 

a-1=-6-a€Z 

commutative axiom: 

a∗b=a+b+3=b+a+3=b∗a 

therefore, (Z, ∗) is an abelian group. 

6. Prove that the set Q-1 of rational numbers other than'-1' is an abelian group  



 

 

w r t ∗ defined by a∗b=a+b+ab,∀a,b€Q-1 

soln: 

closure axiom: 

let a,b€Q-1, a∗b=a+b+ab€Q-1 

Associative axiom: 

let a,b,c€Q-1 

a∗(b∗c)=a∗(b+c+bc)=a+b+c+bc+a(b+c+bc)=a+b+c+bc+ab+ac+abc 

(a∗b)∗c=(a+b+ab) ∗c =a+b+ab+c+(a+b+ab)c=a+b+c+ab+ac+bc+abc 

Identity axiom: 

∀a€Z and e be identity 

then by identity axiom a∗e=a 

                                         a+e+ae=a 

                                        e+ae=0 

                                        e(1+a)=0 

                                     e=0€Q-1 is identity, because a≠-1 

Inverse axiom: 

∀a€ Q-1, let a-1 be the inverse of a 

by inverse axiom 

a∗a-1=e 

a+a-1+aa-1=0 

a-1(1+a)=-a 

a-1=
-a

1+ a €Q-1 

commutative axiom: 

a∗b=a+b+ab=b+a+ba=b∗a 

therefore, (Q-1, ∗) is an abelian group. 

         

Assignments: 

1. Prove that the set of complex numbers {x+iy/x,y€R} is a group under addition. 

2. Prove that the set of even integers is an abelian group under addition. 

let G={2n/n€}   

(G,+) 

3. Prove that the set of integers Z is a group w r t ∗ defined by a∗b=a+b+1∀a,b€Z is 

an abelian group. 

let a,b,c€  

a∗(b∗ 𝒄)=a∗(b+c+1)=a+b+c+1+1=a+b+c+2 

let a€Z and e be identity 



 

 

by identity axiom 

a∗e=a 

a+e+1=a 

e+1=0 

e=-1 €Z is identity 

 

let a€Z and e=-1 be identity 

let a-1 be inverse of a 

by inverse axiom 

a∗a-1=e 

a∗a-1=-1 

a+a-1+1=-1 

a-1=-2-a€Z 

commutative axiom 

a∗b=a+b+1=b+a+1= b∗a 

(Z, ∗) is an abelian group 

 

4.  Prove that the set Q1 of rational numbers other than 1 is an abelian group w r t ∗ 

defined by a∗b=a+b-ab,∀a,b€Q1 

 

5. Prove that the set of positive rationals Q+ is a group w r t ∗ defined by 

a∗b=
𝑎𝑏

5
 ∀a,b€ Q+ is a group. 

let a,b,c€ Q+ 

a∗ (b∗c)= a∗
𝑏𝑐

5
=

𝑎
𝑏𝑐

5

5
=

𝑎𝑏𝑐

25
 

Identity axiom: 

let a€Q+ and e be identity 

by identity axiom 

a∗e=a 
𝒂𝒆

𝟓
=a 

e=5€Q+ 

Inverse axiom 

let a€Q+ and e=5 is identity 

let a-1 be inverse of a 

by inverse axiom 



 

 

a∗a-1=e 

𝒂𝒂−𝟏

𝟓
=5 

𝒂−𝟏=
𝟐𝟓

𝒂
 

a∗b=
𝑎𝑏

5
=

𝑏𝑎

5
= b∗a 

 

 

 

 

Properties of Group 

Thm1: Identity element in a group is unique. 

Proof: 

Let (G, ∗) be the group 

If possible, let e & d be two identity elements in G 

let a€G is arbitrary, then by identity axiom 

a∗e=e∗a=a-----(1) 

 a∗d=d∗a=a-----(2) 

from (1)and (2) 

e=d 

thus, identity element in G is unique. 

Thm2: Inverse of an element in a group is unique. 

Proof:  

Let (G, ∗) be the group and e be identity. 

let a€G is arbitrary. 

If possible, let b and c by two inverses of a 

then, by inverse axiom, 

      a∗b= b∗a= e-------(1) 

also, 

     a∗c= c∗a= e-------(2) 

now, b=b∗e 

          b=b∗(a∗c), using (2) 

          b= (b∗a)∗c, by associative axiom 

          b=e∗c, using (1) 

           b=c 

Thm3: Inverse of an inverse element is an element itself. 

Proof: 



 

 

Let (G, ∗) be the group and e be identity. 

let a€G is arbitrary, then its inverse exist denoted by a-1. 

let a-1=x 

by inverse axiom, 

a∗x=x∗a=e 

a and x are inverses to each other 

therefore, a=x-1 

                    a=(a-1)-1 

Thm4:In a group (G, ∗), (a∗ 𝐛)-1=b-1∗a-1, ∀a,b€G. 

Proof: 

Let (G, ∗) be the group and e be identity. 

∀a,b€G, consider 

(a∗b) ∗(b-1∗a-1)= a∗(b ∗b-1) ∗a-1=a∗e∗a-1= a∗a-1=e-----(1) 

also, 

 (b-1∗a-1)∗(a∗b)= b-1∗(a-1∗a)∗b=b-1∗e∗b= b-1∗b=e-----(2) 

from (1) and (2), a∗b and b-1∗a-1 are inverses to each other 

therefore, (a∗b)-1= b-1∗a-1 

note: this property can be extended to more than two elements 

i.e (a∗b∗ c ∗ d)-1=d-1∗c-1∗b-1∗a-1 

Thm5:In a group (G, ∗), (i) if a∗ 𝐛=a∗ 𝐜, then b=c(left cancellation) 

                                           (ii) if b∗c=a∗c, then b=a,(right cancellation) ∀a,b,c€G. 

Proof: 

(i) consider, a∗ b=a∗ c 

     pre operating a-1, we get 

            a-1∗(a∗ b)= a-1∗(a∗ c) 

              (a-1∗a)∗ b= (a-1∗a)∗ c 

                  e∗ b=e∗ c 

                      b=c 

(ii) consider, b∗c=a∗c 

  post operating c-1, we get 

(b∗c)∗c-1=(a∗c)∗c-1 

b∗(c∗c-1)=a∗(c∗c-1) 

 b∗e=a∗e 

   b=a 

Thm6:In a group (G, ∗), the equation x∗a=b, ∀a,b€G has unique solution. 

Proof: 



 

 

consider,  x∗a=b-----(1) 

post operate a-1 both the sides 

                     (x∗a)∗a-1=b∗a-1 

                     x∗(a∗a-1)=b∗a-1 

                      x∗(a∗a-1)=b∗a-1 

                      x∗e= b∗a-1 

                      x= b∗a-1 is the solution in G 

To show the solution is not unique, let x1 and x2 be two solutions of (1) 

therefore, x1∗a=b and x2∗a=b 

then,       x1∗a= x2∗a 

              x1=x2 by right cancellation law                 

 

continuation of problems on groups(finite groups): 

 

1. Prove that the set of cube roots of unity is an abelian group under 

multiplication. 

soln: 

let G={1,ω,ω2} be the cube roots of unity. 

[ where ω= 1 3

2

i− + , ω2= 1 3

2

i− −  such that ω3=1 and 1+ω+ω2=0] 

construct the composition table 

   .   1   ω     ω2 

1     1   ω     ω2 

ω    ω   ω2   1   

ω2  ω2  1     ω 

1. closure axiom: All the elements in the table are in set G. 

2. Associative axiom: 1 (ω ω2)=1.1=1 

                                       (1. ω) ω2= ω. ω2=1 

3. Identity axiom: 1 is identity element in G 

4. Inverse axiom: 1-1=1, ω-1= ω2, (ω2)-1= ω 

5. commutative axiom: the table is symmetric about the diagonal elements 

therefore, (G, .) is an abelian group. 

 

2. Prove that the set of fourth roots of unity is an abelian group under 

multiplication. 

soln: 

let G={1,-1,i,-i} be the fourth roots of unity. 



 

 

construct the composition table 

   .   1   -1     i   -i 

 1     1   -1    i   -i 

-1    -1   1   -i     i   

 i      i    -i   -1   1 

-i    -i     i    1   -1 

1. closure axiom: All the elements in the table are in set G. 

2. Associative axiom: 1 (i . -i)=1.1=1 

                                       (1. i) -i= i. -i=1 

3. Identity axiom: 1 is identity element in G 

4. Inverse axiom: 1-1=1, -1-1=1, (i)-1= -i, (-i)-1= i 

5. commutative axiom: the table is symmetric about the diagonal elements 

therefore, (G, .) is an abelian group. 

1. Prove that the set of integers Z is an abelian group under addition modulo4. 

soln: 

let G={0,1,2,3} be the set of integers modulo4 

 

construct the composition table 

4⊕    0   1     2   3 

 0     0   1    2   3 

1     1    2   3    0   

2     2    3   0    1 

3     3    0    1    2 

1. closure axiom: All the elements in the table are in set G. 

2. Associative axiom: 1 4⊕ (2 4⊕ 3)= 1 4⊕ 1=2 

                                       (1 4⊕ 2) 4⊕ 3= 3 4⊕ 3=3 

3. Identity axiom: 0 is identity element in G 

4. Inverse axiom: 0-1=0, 1-1=3, 2-1= 2, 3-1= 1 

5. commutative axiom: the table is symmetric about the diagonal elements 

therefore, (G, 4⊕ ) is an abelian group. 

 

2. Prove that the set of integers Z is an abelian group under addition modulo6. 

soln: 

let G={0,1,2,3,4,5} be the set of integers modulo6 

. 

construct the composition table 



 

 

6⊕    0   1     2   3   4    5 

 0     0   1    2   3     4    5 

1     1    2   3    4     5    0 

2     2    3   4    5     0    1     

3     3    4    5    0    1    2  

4     4    5    0    1    2    3 

5     5    0    1    2    3    4  

1. closure axiom: All the elements in the table are in set G. 

2. Associative axiom: 1 6⊕ (4 6⊕ 5)= 1 4⊕ 3=4 

                                       (1 6⊕ 4) 6⊕ 5= 5 4⊕ 5=4 

3. Identity axiom: 0 is identity element in G 

4. Inverse axiom: 0-1=0, 1-1=5, 2-1= 4, 3-1= 3, 4-1=2, 5-1=1 

5. commutative axiom: the table is symmetric about the diagonal elements 

therefore, (G, 6⊕ ) is an abelian group. 

3. Prove that the set of non-zero integers Z is an abelian group under 

multiplication modulo7. 

soln: 

let G={1,2,3,4,5,6} be the set of non-zero integers modulo7 

construct the composition table 

7    1   2     3   4   5    6 

 1     1   2    3   4     5    6 

2      2   4   6   1     3    5 

3     3    6   2    5     1    4     

4     4    1    5   2    6    3  

5     5    3    1   6    4    2 

6     6    5    4    3    2    1  

1. closure axiom: All the elements in the table are in set G. 

2. Associative axiom: 1 7  (4 7 5)= 1 7 6=6 

                                      (1 7  4) 7 5= 4 7 5= 6 

3. Identity axiom: 1 is identity element in G 

4. Inverse axiom: 1-1=1, 2-1=4, 3-1= 5, 4-1= 2, 5-1=3, 6-1=6 

5. commutative axiom: the table is symmetric about the diagonal elements 

therefore, (G, 7 ) is an abelian group. 

4. Prove that the set of non-zero integers Z is an abelian group under 

multiplication modulo5. 



 

 

5. Prove that the set {2,4,6,8} multiplication modulo10. 

soln: 

let G={2,4,6,8}  

construct the composition table 

10   2   4   6   8 

 2     2   4    6   8 

4     8    6    4   2   

6     2    4    6   8 

8     6    2    8   4 

1. closure axiom: All the elements in the table are in set G. 

2. Associative axiom: 2 10 (4 10 6)= 2 10 4=8 

                                       (2 10 4) 10 6= 8 10 6=8 

3. Identity axiom: 1 is identity element in G 

4. Inverse axiom: 2-1=8, 4-1=4, 6-1= 6, 8-1= 2 

5. commutative axiom: the table is symmetric about the diagonal elements 

therefore, (G, 10 ) is an abelian group. 

 

6. Prove that the set {1, 5,7,11} multiplication modulo12. 

soln: 

let G={1, 5,7,11} 

construct the composition table 

1 2   1   5   7   11 

 1     1   5    7   11 

5      5    1  11   7   

7      7   11  1   5 

11   11   7   5   1 

1. closure axiom: All the elements in the table are in set G. 

2. Associative axiom: 5 1 2 (7 1 2 11)= 5 1 2 5=1 

                                       (5 1 2 7) 1 2 11= 11 1 2 11=1 

3. Identity axiom: 1 is identity element in G 

4. Inverse axiom: 1-1=1, 5-1=5, 7-1= 7, 11-1= 11 

5. commutative axiom: the table is symmetric about the diagonal elements 

therefore, (G, 1 2 ) is an abelian group. 

 

Assignments: 



 

 

1. Prove that the square roots of unity is an abelian group under multiplication. 

1. Prove that the set of integers Z is an abelian group under addition modulo7. 

2. Prove that the set {1, 3,4,5,9} multiplication modulo11. 

3. Prove that the set 
1  0 -1  0 1  0 -1  0

, , ,
0  1 0  1 0  -1 0  -1

        
        
        

form a group under matrix 

multiplication. 

 

 

 

 

 


