VIJAYA DEGREE COLLEGE VI SEM BCA
 Model Question paper-1
 Computer Science
 BCA 601: THEORY OF COMPUTATION

TIME: 3 hrs
MARKS: 100

INSTRUCTION : ANSWER ALL SECTIONS

SECTION-A

Answer any TEN questions .Each question carries TWO marks
$10 \times 2=20$

1. Define DFA with mathematical representation.
2. Define alphabet and symbol with a suitable example.
3. What is a trap state.
4. Define regular expression.
5. Design a regular expression for the language containing any number of a's and b's ending with aa.
6. State pumping lemma for regular languages.
7. Mention the different types of Chomsky hierarchy grammar.
8. Define PDA.
9. Define GNF.
10.Define Turing Machine .
11.Define PCP.
12.State Arden's Theorem

SECTION-B

Answer any FIVE questions. Each question carries FIVE marks 5X10=50
13. Construct a DFA to accept strings of 0 's and 1 's ending with 101
14. Differentiate between DFA and NFA.
15. Convert the DFA to the Regular expression

16. State and prove the pumping lemma for CFLs.
17. Obtain a CFG for the following language $L=\left\{a^{n} b^{n} \mid n>=1\right\}$
18. Explain the Halting problem of Turing Machine.
19. Rewrite the grammar after eliminating the unit productions from the given grammar
$S->A B$
$A->0$
B->1
C->D
D->E|011A
E->1
20. Show that the following grammar is ambiguous E->E+E|E-E|E*E|\{E\}|id

SECTION-C

Answer any THREE questions. Each question carries FIFTEEN marks
21. Convert the following NFA to DFA

22. Minimize the given DFA using table filling algorithm

$\$$	0	1
A	B	D
B	C	E
C	B	E
D	C	E
E	E	E

23. Construct a PDA to accept the language
$L(M)=\left\{W W^{r} \mid w €(a+b)^{*}\right\}$ where w^{r} is reverse of w by final state acceptance.
24. Find the language accepted by CFG
(a) $G=\{V, T, P, S\}$
$V=\{S\}$
$\mathrm{T}=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{S}=\{\mathrm{S}\}$
$\mathrm{P}=\{\mathrm{S}->\mathrm{aS} \mid \mathrm{b}\}$
(b) Obtain a grammar to generate a string having atleast one b over\{a,b\}
(c) Obtain a CFG for the language $L(M)=\left\{W c W^{r} \mid w €(a, b)^{*}\right\}$ where w^{r} is reverse of w
25. Obtain a turing machine to accept the language $L(M)=\left\{a^{n} b^{n} \mid n>=1\right\}$

SECTION-D

Answer any ONE question. Each question carries TEN marks
26. Construct the NFA with ε-moves for $(0+1) * 1(0+1)$
27. Explain the different types of Turing Machine.

