
INTRODUCTION TO C�

VIJAYA COLLEGE Page 1�

Introduction to C

C is a programming language of many different dialects, similar to the way that each
spoken language has many different dialects. In C, dialects don't exist because the
speakers live in the North or South. Instead, they're there because there are many
different compilers that support slightly different features. There are several common
compilers: in particular, Borland C++, Microsoft C++, and GNU C. There are also many
front-end environments for the different compilers--the most common is Dev-C++
around GNU's G++ compiler. Some, such as GCC, are free, while others are not. Please
see the compiler listing for more information on how to get a compiler and set it up. You
should note that if you are programming in C on a C++ compiler, then you will want to
make sure that your compiler attempts to compile C instead of C++ to avoid small
compatability issues in later tutorials.

Each of these compilers is slightly different. Each one should support the ANSI standard
C functions, but each compiler will also have nonstandard functions (these functions are
similar to slang spoken in different parts of a country). Sometimes the use of nonstandard
functions will cause problems when you attempt to compile source code (the actual C
code written by a programmer and saved as a text file) with a different compiler. These
tutorials use ANSI standard C and should not suffer from this problem; fortunately, since
C has been around for quite a while, there shouldn't be too many compatibility issues
except when your compiler tries to create C++ code.

If you don't yet have a compiler, I strongly recommend finding one now. A

simple compiler is sufficient for our use, but make sure that you do get one in order to get
the most from these tutorials. The page linked above, compilers, lists compilers by
operating system,

Every full C program begins inside a function called "main". A function is simply

a collection of commands that do "something". The main function is always called when
the program first executes. From main, we can call other functions, whether they be
written by us or by others or use built-in language features. To access the standard
functions that comes with your compiler, you need to include a header with the #include
directive. What this does is effectively take everything in the header and paste it into your
program. Let's look at a working program:

 #include <stdio.h>

int main()
{
 printf("I am alive! Beware.\n");
 getchar();
 return 0;
}

http://www.cprogramming.com/borland.html
http://www.cprogramming.com/visual.html
http://www.cprogramming.com/gcc.html
http://www.cprogramming.com/other.html
http://www.cprogramming.com/compilers.html
http://www.cprogramming.com/compilers.html
http://www.cprogramming.com/compilers.html

INTRODUCTION TO C�

VIJAYA COLLEGE Page 2�

Let's look at the elements of the program. The #include is a "preprocessor" directive
that tells the compiler to put code from the header called stdio.h into our program before
actually creating the executable. By including header files, you can gain access to many
different functions both the printf and getchar functions are included in stdio.h. The
semicolon is part of the syntax of C. It tells the compiler that you're at the end of a
command. You will see later that the semicolon is used to end most commands in C.

The next important line is int main(). This line tells the compiler that there is a function
named main, and that the function returns an integer, hence int. The "curly braces" ({ and
}) signal the beginning and end of functions and other code blocks. If you have
programmed in Pascal, you will know them as BEGIN and END. Even if you haven't
programmed in Pascal, this is a good way to think about their meaning.
In some programming languages, the main function is where a program starts execution.

It is generally the first user-written function run when a program starts (some
system-specific software generally runs before the main function), though some
languages (notably C++ with global objects that have constructors) can execute user-
written functions before main runs. The main function usually organizes at a high level
the functionality of the rest of the program. The main function typically has access to the
command arguments given to the program at the command-line interface.

The printf function is the standard C way of displaying output on the screen. The quotes
tell the compiler that you want to output the literal string as-is (almost). The '\n' sequence
is actually treated as a single character that stands for a newline (we'll talk about this later
in more detail); for the time being, just remember that there are a few sequences that,
when they appear in a string literal, are actually not displayed literally by printf and that
'\n' is one of them. The actual effect of '\n' is to move the cursor on your screen to the
next line. Again, notice the semicolon: it is added onto the end of all lines, such as
function calls, in C.

The next command is getchar(). This is another function call: it reads in a single
character and waits for the user to hit enter before reading the character. This line is
included because many compiler environments will open a new console window, run the
program, and then close the window before you can see the output. This command keeps
that window from closing because the program is not done yet because it waits for you to
hit enter. Including that line gives you time to see the program run.

Finally, at the end of the program, we return a value from main to the operating system
by using the return statement. This return value is important as it can be used to tell the
operating system whether our program succeeded or not. A return value of 0 means
success.

The final brace closes off the function. You should try compiling this program and
running it. You can cut and paste the code into a file, save it as a .c file, and then compile
it. If you are using a command-line compiler, such as Borland C++ 5.5, you should read

http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Command-line_argument
http://en.wikipedia.org/wiki/Command-line_interface

INTRODUCTION TO C�

VIJAYA COLLEGE Page 3�

the compiler instructions for information on how to compile. Otherwise compiling and
running should be as simple as clicking a button with your mouse (perhaps the "build" or
"run" button).

You might start playing around with the printf function and get used to writing

simple C programs.

Explaining your Code

Comments are critical for all but the most trivial programs and this tutorial will often use
them to explain sections of code. When you tell the compiler a section of text is a
comment, it will ignore it when running the code, allowing you to use any text you want
to describe the real code. To create a comment in C, you surround the text with /* and
then */ to block off everything between as a comment. Certain compiler environments or
text editors will change the color of a commented area to make it easier to spot, but some
will not. Be certain not to accidentally comment out code (that is, to tell the compiler part
of your code is a comment) you need for the program.

When you are learning to program, it is also useful to comment out sections of
code in order to see how the output is affected.

Using Variables

So far you should be able to write a simple program to display information typed in by
you, the programmer and to describe your program with comments. That's great, but what
about interacting with your user? Fortunately, it is also possible for your program to
accept input.

But first, before you try to receive input, you must have a place to store that input.
In programming, input and data are stored in variables. There are several different types
of variables; when you tell the compiler you are declaring a variable, you must include
the data type along with the name of the variable. Several basic types include char, int,
 andfloat. Each type can store different types of data.

A variable of type char stores a single character, variables of type int store
integers (numbers without decimal places), and variables of type float store numbers with
decimal places. Each of these variable types - char, int, and float - is each a keyword that
you use when you declare a variable. Some variables also use more of the computer's
memory to store their values.

It may seem strange to have multiple variable types when it seems like some

variable types are redundant. But using the right variable size can be important for
making your program efficient because some variables require more memory than others.
For now, suffice it to say that the different variable types will almost all be used!

http://www.cprogramming.com/texteditors.html

INTRODUCTION TO C�

VIJAYA COLLEGE Page 4�

Before you can use a variable, you must tell the compiler about it by declaring it and
telling the compiler about what its "type" is. To declare a variable you use the syntax
<variable type> <name of variable>;. (The brackets here indicate that your replace the
expression with text described within the brackets.) For instance, a basic variable
declaration might look like this:

int myVariable;

Note once again the use of a semicolon at the end of the line. Even though we're not
calling a function, a semicolon is still required at the end of the "expression". This code
would create a variable called myVariable; now we are free to use myVariable later in the
program.

It is permissible to declare multiple variables of the same type on the same line; each one
should be separated by a comma. If you attempt to use an undefined variable, your
program will not run, and you will receive an error message informing you that you have
made a mistake.
Here are some variable declaration examples:

int x;
int a, b, c, d;
char letter;
float the_float;

While you can have multiple variables of the same type, you cannot have multiple
variables with the same name. Moreover, you cannot have variables and functions with
the same name.

A final restriction on variables is that variable declarations must come before
other types of statements in the given "code block" (a code block is just a segment of
code surrounded by { and }). So in C you must declare all of your variables before you
do anything else:

Wrong

#include <stdio.h>
int main()
{
 /* wrong! The variable declaration must appear first */
 printf("Declare x next");
 int x;

 return 0;
}

INTRODUCTION TO C�

VIJAYA COLLEGE Page 5�

Fixed

#include <stdio.h>
int main()
{
 int x;
 printf("Declare x first");

 return 0;
}

Reading input

Using variables in C for input or output can be a bit of a hassle at first, but bear with it
and it will make sense. We'll be using the scanf function to read in a value and then printf
to read it back out. Let's look at the program and then pick apart exactly what's going on.
You can even compile this and run it if it helps you follow along.

#include <stdio.h>

int main()
{
 int this_is_a_number;

 printf("Please enter a number: ");
 scanf("%d", &this_is_a_number);
 printf("You entered %d", this_is_a_number);
 getchar();
 return 0;
}

So what does all of this mean? We've seen the #include and main function before; main
must appear in every program you intend to run, and the #include gives us access to
printf (as well as scanf). (As you might have guessed, the io in stdio.h stands for
"input/output"; std just stands for "standard.") The keyword int declares
this_is_a_number to be an integer.

This is where things start to get interesting: the scanf function works by taking a
string and some variables modified with &. The string tells scanf what variables to look
for: notice that we have a string containing only "%d" -- this tells the scanf function to
read in an integer. The second argument of scanf is the variable, sort of. We'll learn more
about what is going on later, but the gist of it is that scanf needs to know where the
variable is stored in order to change its value. Using & in front of a variable allows you to
get its location and give that to scanf instead of the value of the variable. Think of it like
giving someone directions to the soda aisle and letting them go get a coca-cola instead of

INTRODUCTION TO C�

VIJAYA COLLEGE Page 6�

fetching the coke for that person. The & gives the scanf function directions to the
variable.

When the program runs, each call to scanf checks its own input string to see what kinds
of input to expect, and then stores the value input into the variable.The second printf
statement also contains the same '%d'--both scanf and printf use the same format for
indicating values embedded in strings. In this case, printf takes the first argument after
the string, the variable this_is_a_number, and treats it as though it were of the type
specified by the "format specifier". In this case, printf treats this_is_a_number as an
integer based on the format specifier.

So what does it mean to treat a number as an integer? If the user attempts to type in a
decimal number, it will be truncated (that is, the decimal component of the number will
be ignored) when stored in the variable. Try typing in a sequence of characters or a
decimal number when you run the example program; the response will vary from input to
input, but in no case is it particularly pretty.

Of course, no matter what type you use, variables are uninteresting without the ability to
modify them. Several operators used with variables include the following: *, -, +, /, =,
==, >, <. The * multiplies, the / divides, the - subtracts, and the + adds. It is of course
important to realize that to modify the value of a variable inside the program it is rather
important to use the equal sign. In some languages, the equal sign compares the value of
the left and right values, but in C == is used for that task. The equal sign is still extremely
useful. It sets the value of the variable on the left side of the equals sign equal to the value
on the right side of the equals sign. The operators that perform mathematical functions
should be used on the right side of an equal sign in order to assign the result to a variable
on the left side.
Here are a few examples:

a = 4 * 6; /* (Note use of comments and of semicolon) a is 24 */
a = a + 5; /* a equals the original value of a with five added to it */
a == 5 /* Does NOT assign five to a. Rather, it checks to see if a equals 5.*/

The other form of equal, ==, is not a way to assign a value to a variable. Rather, it checks
to see if the variables are equal. It is extremely useful in many areas of C; for example,
you will often use == in such constructions as conditional statements and loops. You can
probably guess how < and > function. They are greater than and less than operators.

For example:

a < 5 /* Checks to see if a is less than five */
a > 5 /* Checks to see if a is greater than five */
a == 5 /* Checks to see if a equals five, for good measure */

INTRODUCTION TO C�

VIJAYA COLLEGE Page 7�

Lesson 2: If statements

The ability to control the flow of your program, letting it make decisions on what code to
execute, is valuable to the programmer. The if statement allows you to control if a
program enters a section of code or not based on whether a given condition is true or
false. One of the important functions of the if statement is that it allows the program to
select an action based upon the user's input. For example, by using an if statement to
check a user-entered password, your program can decide whether a user is allowed access
to the program.

Without a conditional statement such as the if statement, programs would run almost the
exact same way every time, always following the same sequence of function calls. If
statements allow the flow of the program to be changed, which leads to more interesting
code.

Before discussing the actual structure of the if statement, let us examine the meaning of
TRUE and FALSE in computer terminology. A true statement is one that evaluates to a
nonzero number. A false statement evaluates to zero. When you perform comparison with
the relational operators, the operator will return 1 if the comparison is true, or 0 if the
comparison is false. For example, the check 0 == 2 evaluates to 0. The check 2 == 2
evaluates to a 1. If this confuses you, try to use a printf statement to output the result of
those various comparisons (for example printf ("%d", 2 == 1);)

When programming, the aim of the program will often require the checking of one value
stored by a variable against another value to determine whether one is larger, smaller, or
equal to the other.
There are a number of operators that allow these checks.
Here are the relational operators, as they are known, along with examples:

> greater than 5 > 4 is TRUE
< less than 4 < 5 is TRUE
>= greater than or equal 4 >= 4 is TRUE
<= less than or equal 3 <= 4 is TRUE
== equal to 5 == 5 is TRUE
!= not equal to 5 != 4 is TRUE

It is highly probable that you have seen these before, probably with slightly different
symbols. They should not present any hindrance to understanding. Now that you
understand TRUE and FALSE well as the comparison operators, let us look at the actual
structure of if statements.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 8�

Basic If Syntax

The structure of an if statement is as follows:

if (statement is TRUE)
 Execute this line of code

Here is a simple example that shows the syntax:

if (5 < 10)
 printf("Five is now less than ten, that's a big surprise");

Here, we're just evaluating the statement, "is five less than ten", to see if it is true or not;
with any luck, it's not! If you want, you can write your own full program including
stdio.h and put this in the main function and run it to test.

To have more than one statement execute after an if statement that evaluates to true, use
braces, like we did with the body of the main function. Anything inside braces is called a
compound statement, or a block. When using if statements, the code that depends on the
if statement is called the "body" of the if statement.
For example:

if (TRUE) {
 /* between the braces is the body of the if statement */
 Execute all statements inside the body
}

I recommend always putting braces following if statements. If you do this, you never
have to remember to put them in when you want more than one statement to be executed,
and you make the body of the if statement more visually clear.

Else

Sometimes when the condition in an if statement evaluates to false, it would be nice to
execute some code instead of the code executed when the statement evaluates to true. The
"else" statement effectively says that whatever code after it (whether a single line or code
between brackets) is executed if the if statement is FALSE.

It can look like this:

if (TRUE) {
 /* Execute these statements if TRUE */
}
else {
 /* Execute these statements if FALSE */
}

INTRODUCTION TO C�

VIJAYA COLLEGE Page 9�

Else if

Another use of else is when there are multiple conditional statements that may all
evaluate to true, yet you want only one if statement's body to execute. You can use an
"else if" statement following an if statement and its body; that way, if the first statement
is true, the "else if" will be ignored, but if the if statement is false, it will then check the
condition for the else if statement. If the if statement was true the else statement will not
be checked. It is possible to use numerous else if statements to ensure that only one block
of code is executed.

Let's look at a simple program for you to try out on your own.

#include <stdio.h>

int main() /* Most important part of the program!
*/
{
 int age; /* Need a variable... */

 printf("Please enter your age"); /* Asks for age */
 scanf("%d", &age); /* The input is put in age */
 if (age < 100) { /* If the age is less than 100 */
 printf ("You are pretty young!\n"); /* Just to show you it works... */
 }
 else if (age == 100) { /* I use else just to show an example */
 printf("You are old\n");
 }
 else {
 printf("You are really old\n"); /* Executed if no other statement is
 */
 }
 return 0;
}

More interesting conditions using boolean operators

Boolean operators allow you to create more complex conditional statements. For
example, if you wish to check if a variable is both greater than five and less than ten, you
could use the Boolean AND to ensure both var > 5 and var < 10 are true. In the following
discussion of Boolean operators, I will capitalize the Boolean operators in order to
distinguish them from normal English. The actual C operators of equivalent function will
be described further along into the tutorial - the C symbols are not: OR, AND, NOT,
although they are of equivalent function.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 10�

When using if statements, you will often wish to check multiple different conditions. You
must understand the Boolean operators OR, NOT, and AND. The boolean operators
function in a similar way to the comparison operators: each returns 0 if evaluates to
FALSE or 1 if it evaluates to TRUE.
NOT: The NOT operator accepts one input. If that input is TRUE, it returns FALSE, and
if that input is FALSE, it returns TRUE. For example, NOT (1) evaluates to 0, and NOT
(0) evaluates to 1. NOT (any number but zero) evaluates to 0. In C NOT is written as !.
NOT is evaluated prior to both AND and OR.
AND: This is another important command. AND returns TRUE if both inputs are TRUE
(if 'this' AND 'that' are true). (1) AND (0) would evaluate to zero because one of the
inputs is false (both must be TRUE for it to evaluate to TRUE). (1) AND (1) evaluates to
1. (any number but 0) AND (0) evaluates to 0. The AND operator is written && in C. Do
not be confused by thinking it checks equality between numbers: it does not. Keep in
mind that the AND operator is evaluated before the OR operator.

OR: Very useful is the OR statement! If either (or both) of the two values it checks are
TRUE then it returns TRUE. For example, (1) OR (0) evaluates to 1. (0) OR (0) evaluates
to 0. The OR is written as || in C. Those are the pipe characters. On your keyboard, they
may look like a stretched colon. On my computer the pipe shares its key with \. Keep in
mind that OR will be evaluated after AND.

It is possible to combine several Boolean operators in a single statement; often you will
find doing so to be of great value when creating complex expressions for if statements.
What is !(1 && 0)? Of course, it would be TRUE. It is true is because 1 && 0 evaluates
to 0 and !0 evaluates to TRUE (ie, 1).

Try some of these - they're not too hard. If you have questions about them, feel free to
stop by our forums.

A. !(1 || 0) ANSWER: 0
B. !(1 || 1 && 0) ANSWER: 0 (AND is evaluated before OR)
C. !((1 || 0) && 0) ANSWER: 1 (Parenthesis are useful)

INTRODUCTION TO C�

VIJAYA COLLEGE Page 11�

Lesson 3: Loops
Loops are used to repeat a block of code. Being able to have your program repeatedly
execute a block of code is one of the most basic but useful tasks in programming -- many
programs or websites that produce extremely complex output (such as a message board)
are really only executing a single task many times. (They may be executing a small
number of tasks, but in principle, to produce a list of messages only requires repeating the
operation of reading in some data and displaying it.) Now, think about what this means: a
loop lets you write a very simple statement to produce a significantly greater result
simply by repetition.
FOR - for loops are the most useful type. The syntax for a for loop is

for (variable initialization; condition; variable update) {
 Code to execute while the condition is true
}

The variable initialization allows you to either declare a variable and give it a value or
give a value to an already existing variable. Second, the condition tells the program that
while the conditional expression is true the loop should continue to repeat itself. The
variable update section is the easiest way for a for loop to handle changing of the
variable. It is possible to do things like x++, x = x + 10, or even x = random (5), and if
you really wanted to, you could call other functions that do nothing to the variable but
still have a useful effect on the code. Notice that a semicolon separates each of these
sections, that is important. Also note that every single one of the sections may be empty,
though the semicolons still have to be there. If the condition is empty, it is evaluated as
true and the loop will repeat until something else stops it.
Example:

#include <stdio.h>
int main()
{
 int x;
 /* The loop goes while x < 10, and x increases by one every loop*/
 for (x = 0; x < 10; x++) {
 /* Keep in mind that the loop condition checks the conditional statement before it
loops again.consequently, when x equals 10 the loop breaks.
 x is updated before the condition is checked. */ printf("%d\n", x);
 }
 getchar();
}

INTRODUCTION TO C�

VIJAYA COLLEGE Page 12�

This program is a very simple example of a for loop. x is set to zero, while x is less than
10 it calls printf to display the value of the variable x, and it adds 1 to x until the
condition is met. Keep in mind also that the variable is incremented after the code in the
loop is run for the first time.
WHILE - WHILE loops are very simple. The basic structure is while (condition) {
Code to execute while the condition is true }
The true represents a boolean expression which could be x == 1 or while (x != 7) (x
does not equal 7). It can be any combination of boolean statements that are legal. Even,
(while x ==5 || v == 7) which says execute the code while x equals five or while v equals
7. Notice that a while loop is like a stripped-down version of a for loop-- it has no
initialization or update section. However, an empty condition is not legal for a while loop
as it is with a for loop.
Example:

#include <stdio.h>

int main()
{
 int x = 0; /* Don't forget to declare variables */

 while (x < 10) { /* While x is less than 10 */
 printf("%d\n", x);
 x++; /* Update x so the condition can be met eventually */
 }
 getchar();
}

This was another simple example, but it is longer than the above FOR loop. The easiest
way to think of the loop is that when it reaches the brace at the end it jumps back up to
the beginning of the loop, which checks the condition again and decides whether to
repeat the block another time, or stop and move to the next statement after the block.

DO,WHILE – DO. WHILE loops are useful for things that want to loop at least once.
The structure is

do {
} while (condition);

Notice that the condition is tested at the end of the block instead of the beginning, so the
block will be executed at least once. If the condition is true, we jump back to the
beginning of the block and execute it again. A do..while loop is almost the same as a
while loop except that the loop body is guaranteed to execute at least once. A while loop
says "Loop while the condition is true, and execute this block of code", a do..while loop
says "Execute this block of code, and then continue to loop while the condition is true".

INTRODUCTION TO C�

VIJAYA COLLEGE Page 13�

Example:

#include <stdio.h>
int main()
{
 int x;
 x = 0;
 do {
 /* "Hello, world!" is printed at least one time even though the condition is false*/
 printf("%d\n", x);
 } while (x != 0);
 getchar();
}

Keep in mind that you must include a trailing semi-colon after the while in the above
example. A common error is to forget that a do..while loop must be terminated with a
semicolon (the other loops should not be terminated with a semicolon, adding to the
confusion). Notice that this loop will execute once, because it automatically executes
before checking the condition.

Break and Continue
Two keywords that are very important to looping are break and continue. The break
command will exit the most immediately surrounding loop regardless of what the
conditions of the loop are. Break is useful if we want to exit a loop under special
circumstances. For example, let's say the program we're working on is a two-person
checkers game. The basic structure of the program might look like this:

while (true)
{
 take_turn(player1);
 take_turn(player2);
}

This will make the game alternate between having player 1 and player 2 take turns. The
only problem with this logic is that there's no way to exit the game; the loop will run
forever! Let's try something like this instead:

while(true)
{
 if (someone_has_won() || someone_wants_to_quit() == TRUE)
 {break;}
 take_turn(player1);
 if (someone_has_won() || someone_wants_to_quit() == TRUE)
 {break;}
 take_turn(player2);
}

INTRODUCTION TO C�

VIJAYA COLLEGE Page 14�

This code accomplishes what we want--the primary loop of the game will continue under
normal circumstances, but under a special condition (winning or exiting) the flow will
stop and our program will do something else.
Continue is another keyword that controls the flow of loops. If you are executing a loop
and hit a continue statement, the loop will stop its current iteration, update itself (in the
case of for loops) and begin to execute again from the top. Essentially, the continue
statement is saying "this iteration of the loop is done, let's continue with the loop without
executing whatever code comes after me." Let's say we're implementing a game of
Monopoly. Like above, we want to use a loop to control whose turn it is, but controlling
turns is a bit more complicated in Monopoly than in checkers. The basic structure of our
code might then look something like this:

for (player = 1; someone_has_won == FALSE; player++)
 {
 if (player > total_number_of_players)
 {player = 1;}
 if (is_bankrupt(player))
 {continue;}
 take_turn(player);
 }

This way, if one player can't take her turn, the game doesn't stop for everybody; we just
skip her and keep going with the next player's turn.

Lesson 4: Functions

Now that you should have learned about variables, loops, and conditional statements it is
time to learn about functions. You should have an idea of their uses as we have already
used them and defined one in the guise of main. cin.get() is an example of a function. In
general, functions are blocks of code that perform a number of pre-defined commands to
accomplish something productive.

Functions that a programmer writes will generally require a prototype. Just like a
blueprint, the prototype tells the compiler what the function will return, what the function
will be called, as well as what arguments the function can be passed. When I say that the
function returns a value, I mean that the function can be used in the same manner as a
variable would be. For example, a variable can be set equal to a function that returns a
value between zero and four.For example:

#include <cstdlib> // Include rand()

using namespace std; // Make rand() visible

int a = rand(); // rand is a standard function that all compilers have

INTRODUCTION TO C�

VIJAYA COLLEGE Page 15�

Do not think that 'a' will change at random, it will be set to the value returned when the
function is called, but it will not change again.The general format for a prototype is
simple:

return-type function_name (arg_type arg1, ..., arg_type argN);

arg_type just means the type for each argument -- for instance, an int, a float, or a char.
It's exactly the same thing as what you would put if you were declaring a variable.

There can be more than one argument passed to a function or none at all (where the
parentheses are empty), and it does not have to return a value. Functions that do not
return values have a return type of void. Let's look at a function prototype:

int mult (int x, int y);

This prototype specifies that the function mult will accept two arguments, both integers,
and that it will return an integer. Do not forget the trailing semi-colon. Without it, the
compiler will probably think that you are trying to write the actual definition of the
function.
When the programmer actually defines the function, it will begin with the prototype,
minus the semi-colon. Then there should always be a block with the code that the
function is to execute, just as you would write it for the main function. Any of the
arguments passed to the function can be used as if they were declared in the block.
Finally, end it all with a cherry and a closing brace. Okay, maybe not a cherry.
Let's look at an example program:

#include <iostream>
using namespace std;
int mult (int x, int y);
int main()
{
 int x;
 int y;
 cout<<"Please input two numbers to be multiplied: ";
 cin>> x >> y;
 cin.ignore();
 cout<<"The product of your two numbers is "<< mult (x, y) <<"\n";
 cin.get();
}

int mult (int x, int y)
{
 return x * y;
}

This program begins with the only necessary include file and a directive to make the std
namespace visible. Everything in the standard headers is inside of the std namespace and

INTRODUCTION TO C�

VIJAYA COLLEGE Page 16�

not visible to our programs unless we make them so. Next is the prototype of the
function. Notice that it has the final semi-colon! The main function returns an integer,
which you should always have to conform to the standard. You should not have trouble
understanding the input and output functions. It is fine to use cin to input to variables as
the program does. But when typing in the numbers, be sure to separate them by a space
so that cin can tell them apart and put them in the right variables.

Notice how cout actually outputs what appears to be the mult function. What is really
happening is cout is printing the value returned by mult, not mult itself. The result would
be the same as if we had use this print instead

cout<<"The product of your two numbers is "<< x * y <<"\n";

INTRODUCTION TO C�

VIJAYA COLLEGE Page 17�

The mult function is actually defined below main. Due to its prototype being above main,
the compiler still recognizes it as being defined, and so the compiler will not give an error
about mult being undefined. As long as the prototype is present, a function can be used
even if there is no definition. However, the code cannot be run without a definition even
though it will compile. The prototype and definition can be combined into one also. If
mult were defined before it is used, we could do away with the prototype because the
definition can act as a prototype as well.

Return is the keyword used to force the function to return a value. Note that it is possible
to have a function that returns no value. If a function returns void, the retun statement is
valid, but only if it does not have an expression. In otherwords, for a function that returns
void, the statement "return;" is legal, but redundant.

The most important functional (Pun semi-intended) question is why do we need a
function? Functions have many uses. For example, a programmer may have a block of
code that he has repeated forty times throughout the program. A function to execute that
code would save a great deal of space, and it would also make the program more
readable. Also, having only one copy of the code makes it easier to make changes. Would
you rather make forty little changes scattered all throughout a potentially large program,
or one change to the function body? So would I.

Another reason for functions is to break down a complex program into logical parts. For
example, take a menu program that runs complex code when a menu choice is selected.
The program would probably best be served by making functions for each of the actual
menu choices, and then breaking down the complex tasks into smaller, more manageable
tasks, which could be in their own functions. In this way, a program can be designed that
makes sense when read. And has a structure that is easier to understand quickly. The
worst programs usually only have the required function, main, and fill it with pages of
jumbled code.

Recursion

Recursion is a programming technique that allows the programmer to express operations
in terms of themselves. In C++, this takes the form of a function that calls itself. A useful
way to think of recursive functions is to imagine them as a process being performed
where one of the instructions is to "repeat the process". This makes it sound very similar
to a loop because it repeats the same code, and in some ways it is similar to looping. On
the other hand, recursion makes it easier to express ideas in which the result of the
recursive call is necessary to complete the task. Of course, it must be possible for the
"process" to sometimes be completed without the recursive call. One simple example is
the idea of building a wall that is ten feet high; if I want to build a ten foot high wall, then
I will first build a 9 foot high wall, and then add an extra foot of bricks. Conceptually,
this is like saying the "build wall" function takes a height and if that height is greater than
one, first calls itself to build a lower wall, and then adds one a foot of bricks.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 18�

A simple example of recursion would be:

void recurse()
{
 recurse(); /* Function calls itself */
}

int main()
{
 recurse(); /* Sets off the recursion */
 return 0;
}

This program will not continue forever, however. The computer keeps function calls on a
stack and once too many are called without ending, the program will crash. Why not
write a program to see how many times the function is called before the program
terminates?

#include <stdio.h>

void recurse (int count) /* Each call gets its own copy of count */
{
 printf("%d\n", count);
 /* It is not necessary to increment count since each function's
 variables are separate (so each count will be initialized one greater)
 */
 recurse (count + 1);
}

int main()
{
 recurse (1); /* First function call, so it starts at one */
 return 0;
}

This simple program will show the number of times the recurse function has been called
by initializing each individual function call's count variable one greater than it was
previous by passing in count + 1. Keep in mind that it is not a function call restarting
itself; it is hundreds of function calls that are each unfinished.

The best way to think of recursion is that each function call is a "process" being carried
out by the computer. If we think of a program as being carried out by a group of people
who can pass around information about the state of a task and instructions on performing
the task, each recursive function call is a bit like each person asking the next person to
follow the same set of instructions on some part of the task while the first person waits
for the result.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 19�

At some point, we're going to run out of people to carry out the instructions, just as our
previous recursive functions ran out of space on the stack. There needs to be a way to
avoid this! To halt a series of recursive calls, a recursive function will have a condition
that controls when the function will finally stop calling itself. The condition where the
function will not call itself is termed the base case of the function. Basically, it will
usually be an if-statement that checks some variable for a condition (such as a number
being less than zero, or greater than some other number) and if that condition is true, it
will not allow the function to call itself again. (Or, it could check if a certain condition is
true and only then allow the function to call itself).

A quick example:

void count_to_ten (int count)
{
 /* we only keep counting if we have a value less than ten
 if (count < 10)
 {
 count_to_ten(count + 1);
 }
}
int main()
{
 count_to_ten (0);
}

This program ends when we've counted to ten, or more precisely, when count is no longer
less than ten. This is a good base case because it means that if we have an input greater
than ten, we'll stop immediately. If we'd chosen to stop when count equalled ten, then if
the function were called with the input 11, it would run of of memory before stopping.

Notice that so far, we haven't done anything with the result of a recursive function call.
Each call takes place and performs some action that is then ignored by the caller. It is
possible to get a value back from the caller, however. It's also possible to take advantage
of the side effects of the previous call. In either case, once a function has called itself, it
will be ready to go to the next line after the call. It can still perform operations. One
function you could write could print out the numbers 123456789987654321. How can
you use recursion to write a function to do this? Simply have it keep incrementing a
variable passed in, and then output the variable twice: once before the function recurses,
and once after.

void printnum (int begin)
{
 printf("%d", begin);
 if (begin < 9) /* The base case is when begin is no longer */
 { /* less than 9 */
 printnum (begin + 1);

INTRODUCTION TO C�

VIJAYA COLLEGE Page 20�

 }
 /* display begin again after we've already printed everything from 1 to 9
 * and from 9 to begin + 1 */
 printf("%d", begin);
}

This function works because it will go through and print the numbers begin to 9, and then
as each printnum function terminates it will continue printing the value of begin in each
function from 9 to begin.

This is, however, just touching on the usefulness of recursion. Here's a little challenge:
use recursion to write a program that returns the factorial of any number greater than 0.
(Factorial is number*number-1*number-2...*1).

Hint: Your function should recursively find the factorial of the smaller numbers first, i.e.,
it takes a number, finds the factorial of the previous number, and multiplies the number
times that factorial...have fun. :-)

Lesson 5: switch case
Switch case statements are a substitute for long if statements that compare a variable to
several "integral" values ("integral" values are simply values that can be expressed as an
integer, such as the value of a char). The basic format for using switch case is outlined
below. The value of the variable given into switch is compared to the value following
each of the cases, and when one value matches the value of the variable, the computer
continues executing the program from that point.

switch (<variable>) {
case this-value:
 Code to execute if <variable> == this-value
 break;
case that-value:
 Code to execute if <variable> == that-value
 break;
...
default:
 Code to execute if <variable> does not equal the value following any of the cases

INTRODUCTION TO C�

VIJAYA COLLEGE Page 21�

 break;
}

The condition of a switch statement is a value. The case says that if it has the value of
whatever is after that case then do whatever follows the colon. The break is used to break
out of the case statements. Break is a keyword that breaks out of the code block, usually
surrounded by braces, which it is in. In this case, break prevents the program from falling
through and executing the code in all the other case statements. An important thing to
note about the switch statement is that the case values may only be constant integral
expressions. Sadly, it isn't legal to use case like this:

int a = 10;
int b = 10;
int c = 20;

switch (a) {
case b:
 /* Code */
 break;
case c:
 /* Code */
 break;
default:
 /* Code */
 break;
}

The default case is optional, but it is wise to include it as it handles any unexpected cases.
It can be useful to put some kind of output to alert you to the code entering the default
case if you don't expect it to. Switch statements serve as a simple way to write long if
statements when the requirements are met. Often it can be used to process input from a
user.
Below is a sample program, in which not all of the proper functions are actually declared,
but which shows how one would use switch in a program.

 #include <stdio.h>
void playgame();
void loadgame();
void playmultiplayer();

int main()
{
 int input;

INTRODUCTION TO C�

VIJAYA COLLEGE Page 22�

 printf("1. Play game\n");
 printf("2. Load game\n");
 printf("3. Play multiplayer\n");
 printf("4. Exit\n");
 printf("Selection: ");
 scanf("%d", &input);
 switch (input) {
 case 1: /* Note the colon, not a semicolon */
 playgame();
 break;
 case 2:
 loadgame();
 break;
 case 3:
 playmultiplayer();
 break;
 case 4:
 printf("Thanks for playing!\n");
 break;
 default:
 printf("Bad input, quitting!\n");
 break;
 }
 getchar();

}

This program will compile, but cannot be run until the undefined functions are given
bodies, but it serves as a model (albeit simple) for processing input. If you do not
understand this then try mentally putting in if statements for the case statements. Default
simply skips out of the switch case construction and allows the program to terminate
naturally. If you do not like that, then you can make a loop around the whole thing to
have it wait for valid input. You could easily make a few small functions if you wish to
test the code.

Lesson 6: An introduction to pointers
Pointers are an extremely powerful programming tool. They can make some things much
easier, help improve your program's efficiency, and even allow you to handle unlimited
amounts of data. For example, using pointers is one way to have a function modify a
variable passed to it. It is also possible to use pointers to dynamically allocate memory,
which means that you can write programs that can handle nearly unlimited amounts of

INTRODUCTION TO C�

VIJAYA COLLEGE Page 23�

data on the fly--you don't need to know, when you write the program, how much memory
you need. Wow, that's kind of cool. Actually, it's very cool, as we'll see in some of the
next tutorials. For now, let's just get a basic handle on what pointers are and how you use
them.

What are pointers? Why should you care?

Pointers are aptly name: they "point" to locations in memory. Think of a row of safety
deposity boxes of various sizes at a local bank. Each safety deposity box will have a
number associated with it so that you can quickly look it up. These numbers are like the
memory addresses of variables. A pointer in the world of safety deposit box would
simply be anything that stored the number of another safety deposit box. Perhaps you
have a rich uncle who stored valuables in his safety deposit box, but decided to put the
real location in another, smaller, safety deposit box that only stored a card with the
number of the large box with the real jewelery. The safety deposit box with the card
would be storing the location of another box; it would be equivalent to a pointer. In the
computer, pointers are just variables that store memory addresses, usually the addresses
of other variables.

The cool thing is that once can talk about the address of a variable, you'll then be able to
go to that address and retrieve the data stored in it. If you happen to have a huge piece of
data that you want to pass into a function, it's a lot easier to pass its location to the
function that to copy every element of the data! Moreover, if you need more memory for
your program, you can request more memory from the system--how do you get "back"
that memory? The system tells you where it is located in memory; that is to say, you get a
memory address back. And you need pointers to store the memory address.

A note about terms: the word pointer can refer either to a memory address itself, or to a
variable that stores a memory address. Usually, the distinction isn't really that important:
if you pass a pointer variable into a function, you're passing the value stored in the
pointer--the memory address. When I want to talk about a memory address, I'll refer to it
as a memory address; when I want a variable that stores a memory address, I'll call it a
pointer. When a variable stores the address of another variable, I'll say that it is "pointing
to" that variable.

Pointer Syntax

Pointers require a bit of new syntax because when you have a pointer, you need the
ability to both request the memory location it stores and the value stored at that memory
location. Moreover, since pointers are somewhat special, you need to tell the compiler
when you declare your pointer variable that the variable is a pointer, and tell the compiler
what type of memory it points to.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 24�

The pointer declaration looks like this:

<variable_type> *<name>;

For example, you could declare a pointer that stores the address of an integer with the
following syntax:

int *points_to_integer;

Notice the use of the *. This is the key to declaring a pointer; if you add it directly before
the variable name, it will declare the variable to be a pointer. Minor gotcha: if you declare
multiple pointers on the same line, you must precede each of them with an asterisk:

/* one pointer, one regular int */
int *pointer1, nonpointer1;

/* two pointers */
int *pointer1, *pointer2;

As I mentioned, there are two ways to use the pointer to access information: it is possible
to have it give the actual address to another variable. To do so, simply use the name of
the pointer without the *. However, to access the actual memory location, use the *. The
technical name for this doing this is dereferencing the pointer; in essence, you're taking
the reference to some memory address and following it, to retrieve the actual value. It can
be tricky to keep track of when you should add the asterisk. Remember that the pointer's
natural use is to store a memory address; so when you use the pointer:

call_to_function_expecting_memory_address(pointer);

then it evaluates to the address. You have to add something extra, the asterisk, in order to
retrieve the value stored at the address. You'll probably do that an awful lot.
Nevertheless, the pointer itself is supposed to store an address, so when you use the bare
pointer, you get that address back.

Pointing to Something: Retrieving an Address

In order to have a pointer actually point to another variable it is necessary to have the
memory address of that variable also. To get the memory address of a variable (its
location in memory), put the & sign in front of the variable name. This makes it give its
address. This is called the address-of operator, because it returns the memory address.
Conveniently, both ampersand and address-of start with a; that's a useful way to
remember that you use & to get the address of a variable.

For example:

INTRODUCTION TO C�

VIJAYA COLLEGE Page 25�

#include <stdio.h>

int main()
{
 int x; /* A normal integer*/
 int *p; /* A pointer to an integer ("*p" is an integer, so p
 must be a pointer to an integer) */

 p = &x; /* Read it, "assign the address of x to p" */
 scanf("%d", &x); /* Put a value in x, we could also use p here */
 printf("%d\n", *p); /* Note the use of the * to get the value */
 getchar();
}

The printf outputs the value stored in x. Why is that? Well, let's look at the code. The
integer is called x. A pointer to an integer is then defined as p. Then it stores the memory
location of x in pointer by using the address operator (&) to get the address of the
variable. Using the ampersand is a bit like looking at the label on the safety deposit box
to see its number rather than looking inside the box, to get what it stores. The user then
inputs a number that is stored in the variable x; remember, this is the same location that is
pointed to by p. In fact, since we use an ampersand to pass the value to scanf, it should be
clear that scanf is putting the value in the address pointed to by p. (In fact, scanf works
becuase of pointers!)

The next line then passes *p into printf. *p performs the "dereferencing" operation on p;
it looks at the address stored in p, and goes to that address and returns the value. This is
akin to looking inside a safety deposit box only to find the number of (and, presumably,
the key to) another box, which you then open.

Notice that in the above example, the pointer is initialized to point to a specific memory
address before it is used. If this was not the case, it could be pointing to anything. This
can lead to extremely unpleasant consequences to the program. For instance, the
operating system will probably prevent you from accessing memory that it knows your
program doesn't own: this will cause your program to crash. If it let you use the memory,
you could mess with the memory of any running program--for instance, if you had a
document opened in Word, you could change the text! Fortunately, Windows and other
modern operating systems will stop you from accessing that memory and cause your
program to crash. To avoid crashing your program, you should always initialize pointers
before you use them.

It is also possible to initialize pointers using free memory. This allows dynamic allocation
of memory. It is useful for setting up structures such as linked lists or data trees where
you don't know exactly how much memory will be needed at compile time, so you have
to get memory during the program's execution. We'll look at these structures later, but for
now, we'll simply examine how to request memory from and return memory to the
operating system.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 26�

The function malloc, residing in the stdlib.h header file, is used to initialize pointers with
memory from free store (a section of memory available to all programs). malloc works
just like any other function call. The argument to malloc is the amount of memory
requested (in bytes), and malloc gets a block of memory of that size and then returns a
pointer to the block of memory allocated.

Since different variable types have different memory requirements, we need to get a size
for the amount of memory malloc should return. So we need to know how to get the size
of different variable types. This can be done using the keyword sizeof, which takes an
expression and returns its size. For example, sizeof(int) would return the number of bytes
required to store an integer.

#include <stdlib.h>

int *ptr = malloc(sizeof(int));

This code set ptr to point to a memory address of size int. The memory that is pointed to
becomes unavailable to other programs. This means that the careful coder should free this
memory at the end of its usage lest the memory be lost to the operating system for the
duration of the program (this is often called a memory leak because the program is not
keeping track of all of its memory).

Note that it is slightly cleaner to write malloc statements by taking the size of the variable
pointed to by using the pointer directly:

int *ptr = malloc(sizeof(*ptr));

What's going on here? sizeof(*ptr) will evaluate the size of whatever we would get back
from dereferencing ptr; since ptr is a pointer to an int, *ptr would give us an int, so
sizeof(*ptr) will return the size of an integer. So why do this? Well, if we later rewrite the
declaration of ptr the following, then we would only have to rewrite the first part of it:

float *ptr = malloc(sizeof(*ptr));

We don't have to go back and correct the malloc call to use sizeof(float). Since ptr would
be pointing to a float, *ptr would be a float, so sizeof(*ptr) would still give the right size!

This becomes even more useful when you end up allocating memory for a variable far
after the point you declare it:

float *ptr = malloc(sizeof(*ptr));
/* hundreds of lines of code */
ptr = malloc(sizeof(*ptr));

The free function returns memory to the operating system.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 27�

free(ptr);

After freeing a pointer, it is a good idea to reset it to point to 0. When 0 is assigned to a
pointer, the pointer becomes a null pointer, in other words, it points to nothing. By doing
this, when you do something foolish with the pointer (it happens a lot, even with
experienced programmers), you find out immediately instead of later, when you have
done considerable damage.

The concept of the null pointer is frequently used as a way of indicating a problem--for
instance, malloc returns 0 when it cannot correctly allocate memory. You want to be sure
to handle this correctly--sometimes your operating system might actually run out of
memory and give you this value!

Taking Stock of Pointers

Pointers may feel like a very confusing topic at first but I think anyone can come to
appreciate and understand them. If you didn't feel like you absorbed everything about
them, just take a few deep breaths and re-read the lesson. You shouldn't feel like you've
fully grasped every nuance of when and why you need to use pointers, though you should
have some idea of some of their basic uses.

What are pointers? Why should you care?

Pointers are aptly name: they "point" to locations in memory. Think of a row of safety
deposity boxes of various sizes at a local bank. Each safety deposity box will have a
number associated with it so that you can quickly look it up. These numbers are like the
memory addresses of variables. A pointer in the world of safety deposit box would
simply be anything that stored the number of another safety deposit box. Perhaps you
have a rich uncle who stored valuables in his safety deposit box, but decided to put the
real location in another, smaller, safety deposit box that only stored a card with the
number of the large box with the real jewelery. The safety deposit box with the card
would be storing the location of another box; it would be equivalent to a pointer. In the
computer, pointers are just variables that store memory addresses, usually the addresses
of other variables.

The cool thing is that once can talk about the address of a variable, you'll then be able to
go to that address and retrieve the data stored in it. If you happen to have a huge piece of
data that you want to pass into a function, it's a lot easier to pass its location to the
function that to copy every element of the data! Moreover, if you need more memory for
your program, you can request more memory from the system--how do you get "back"
that memory? The system tells you where it is located in memory; that is to say, you get a
memory address back. And you need pointers to store the memory address.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 28�

A note about terms: the word pointer can refer either to a memory address itself, or to a
variable that stores a memory address. Usually, the distinction isn't really that important:
if you pass a pointer variable into a function, you're passing the value stored in the
pointer--the memory address. When I want to talk about a memory address, I'll refer to it
as a memory address; when I want a variable that stores a memory address, I'll call it a
pointer. When a variable stores the address of another variable, I'll say that it is "pointing
to" that variable.

Pointer Syntax

Pointers require a bit of new syntax because when you have a pointer, you need the
ability to both request the memory location it stores and the value stored at that memory
location. Moreover, since pointers are somewhat special, you need to tell the compiler
when you declare your pointer variable that the variable is a pointer, and tell the compiler
what type of memory it points to.

The pointer declaration looks like this:

<variable_type> *<name>;

For example, you could declare a pointer that stores the address of an integer with the
following syntax:

int *points_to_integer;

Notice the use of the *. This is the key to declaring a pointer; if you add it directly before
the variable name, it will declare the variable to be a pointer. Minor gotcha: if you declare
multiple pointers on the same line, you must precede each of them with an asterisk:

/* one pointer, one regular int */
int *pointer1, nonpointer1;

/* two pointers */
int *pointer1, *pointer2;

As I mentioned, there are two ways to use the pointer to access information: it is possible
to have it give the actual address to another variable. To do so, simply use the name of
the pointer without the *. However, to access the actual memory location, use the *. The
technical name for this doing this is dereferencing the pointer; in essence, you're taking
the reference to some memory address and following it, to retrieve the actual value. It can
be tricky to keep track of when you should add the asterisk. Remember that the pointer's
natural use is to store a memory address; so when you use the pointer:

INTRODUCTION TO C�

VIJAYA COLLEGE Page 29�

call_to_function_expecting_memory_address(pointer);

then it evaluates to the address. You have to add something extra, the asterisk, in order to
retrieve the value stored at the address. You'll probably do that an awful lot.
Nevertheless, the pointer itself is supposed to store an address, so when you use the bare
pointer, you get that address back.

Pointing to Something: Retrieving an Address

In order to have a pointer actually point to another variable it is necessary to have the
memory address of that variable also. To get the memory address of a variable (its
location in memory), put the & sign in front of the variable name. This makes it give its
address. This is called the address-of operator, because it returns the memory address.
Conveniently, both ampersand and address-of start with a; that's a useful way to
remember that you use & to get the address of a variable.

For example:

#include <stdio.h>

int main()
{
 int x; /* A normal integer*/
 int *p; /* A pointer to an integer ("*p" is an integer, so p
 must be a pointer to an integer) */

 p = &x; /* Read it, "assign the address of x to p" */
 scanf("%d", &x); /* Put a value in x, we could also use p here */
 printf("%d\n", *p); /* Note the use of the * to get the value */
 getchar();
}

The printf outputs the value stored in x. Why is that? Well, let's look at the code. The
integer is called x. A pointer to an integer is then defined as p. Then it stores the memory
location of x in pointer by using the address operator (&) to get the address of the
variable. Using the ampersand is a bit like looking at the label on the safety deposit box
to see its number rather than looking inside the box, to get what it stores. The user then
inputs a number that is stored in the variable x; remember, this is the same location that is

INTRODUCTION TO C�

VIJAYA COLLEGE Page 30�

pointed to by p. In fact, since we use an ampersand to pass the value to scanf, it should be
clear that scanf is putting the value in the address pointed to by p. (In fact, scanf works
becuase of pointers!)

The next line then passes *p into printf. *p performs the "dereferencing" operation on p;
it looks at the address stored in p, and goes to that address and returns the value. This is
akin to looking inside a safety deposit box only to find the number of (and, presumably,
the key to) another box, which you then open.

Notice that in the above example, the pointer is initialized to point to a specific memory
address before it is used. If this was not the case, it could be pointing to anything. This
can lead to extremely unpleasant consequences to the program. For instance, the
operating system will probably prevent you from accessing memory that it knows your
program doesn't own: this will cause your program to crash. If it let you use the memory,
you could mess with the memory of any running program--for instance, if you had a
document opened in Word, you could change the text! Fortunately, Windows and other
modern operating systems will stop you from accessing that memory and cause your
program to crash. To avoid crashing your program, you should always initialize pointers
before you use them. It is also possible to initialize pointers using free memory. This
allows dynamic allocation of memory. It is useful for setting up structures such as linked
lists or data trees where you don't know exactly how much memory will be needed at
compile time, so you have to get memory during the program's execution. We'll look at
these structures later, but for now, we'll simply examine how to request memory from
and return memory to the operating system.

The function malloc, residing in the stdlib.h header file, is used to initialize

pointers with memory from free store (a section of memory available to all programs).
malloc works just like any other function call. The argument to malloc is the amount of
memory requested (in bytes), and malloc gets a block of memory of that size and then
returns a pointer to the block of memory allocated.

Since different variable types have different memory requirements, we need to get

a size for the amount of memory malloc should return. So we need to know how to get
the size of different variable types. This can be done using the keyword sizeof, which
takes an expression and returns its size. For example, sizeof(int) would return the number
of bytes required to store an integer.

#include <stdlib.h>

int *ptr = malloc(sizeof(int));

This code set ptr to point to a memory address of size int. The memory that is pointed to
becomes unavailable to other programs. This means that the careful coder should free this
memory at the end of its usage lest the memory be lost to the operating system for the
duration of the program (this is often called a memory leak because the program is not
keeping track of all of its memory).

INTRODUCTION TO C�

VIJAYA COLLEGE Page 31�

Note that it is slightly cleaner to write malloc statements by taking the size of the
variable pointed to by using the pointer directly:

int *ptr = malloc(sizeof(*ptr));

What's going on here? sizeof(*ptr) will evaluate the size of whatever we would get back
from dereferencing ptr; since ptr is a pointer to an int, *ptr would give us an int, so
sizeof(*ptr) will return the size of an integer. So why do this? Well, if we later rewrite the
declaration of ptr the following, then we would only have to rewrite the first part of it:

float *ptr = malloc(sizeof(*ptr));

We don't have to go back and correct the malloc call to use sizeof(float). Since ptr would
be pointing to a float, *ptr would be a float, so sizeof(*ptr) would still give the right size!

This becomes even more useful when you end up allocating memory for a variable far
after the point you declare it:

float *ptr = malloc(sizeof(*ptr));
/* hundreds of lines of code */
ptr = malloc(sizeof(*ptr));

The free function returns memory to the operating system.

free(ptr);

After freeing a pointer, it is a good idea to reset it to point to 0. When 0 is assigned to a
pointer, the pointer becomes a null pointer, in other words, it points to nothing. By doing
this, when you do something foolish with the pointer (it happens a lot, even with
experienced programmers), you find out immediately instead of later, when you have
done considerable damage.

The concept of the null pointer is frequently used as a way of indicating a
problem--for instance, malloc returns 0 when it cannot correctly allocate memory. You
want to be sure to handle this correctly--sometimes your operating system might actually
run out of memory and give you this value!

Taking Stock of Pointers

Pointers may feel like a very confusing topic at first but I think anyone can come to
appreciate and understand them. If you didn't feel like you absorbed everything about
them, just take a few deep breaths and re-read the lesson. You shouldn't feel like you've
fully grasped every nuance of when and why you need to use pointers, though you should
have some idea of some of their basic uses.

The format for defining a structure is

INTRODUCTION TO C�

VIJAYA COLLEGE Page 32�

struct Tag {
 Members
};

Where Tag is the name of the entire type of structure and Members are the variables
within the struct. To actually create a single structure the syntax is

struct Tag name_of_single_structure;

To access a variable of the structure it goes

name_of_single_structure.name_of_variable;

For example:

struct example {
 int x;
};
struct example an_example; /* Treating it like a normal variable type
 except with the addition of struct*/
an_example.x = 33; /*How to access its members */

Here is an example program:

struct database {
 int id_number;
 int age;
 float salary;
};

int main()
{
 struct database employee; /* There is now an employee variable that has
 modifiable variables inside it.*/
 employee.age = 22;
 employee.id_number = 1;
 employee.salary = 12000.21;
}

The struct database declares that it has three variables in it, age, id_number, and salary.
You can use database like a variable type like int. You can create an employee with the
database type as I did above. Then, to modify it you call everything with the 'employee.'
in front of it. You can also return structures from functions by defining their return type
as a structure type. For instance:

struct database fn();

INTRODUCTION TO C�

VIJAYA COLLEGE Page 33�

I will talk only a little bit about unions as well. Unions are like structures except that all
the variables share the same memory. When a union is declared the compiler allocates
enough memory for the largest data-type in the union. Its like a giant storage chest where
you can store one large item, or a small item, but never the both at the same time.

The '.' operator is used to access different variables inside a union also.

As a final note, if you wish to have a pointer to a structure, to actually access the
information stored inside the structure that is pointed to, you use the -> operator in place
of the . operator. All points about pointers still apply.
A quick example:

#include <stdio.h>

struct xampl {
 int x;
};

int main()
{
 struct xampl structure;
 struct xampl *ptr;

 structure.x = 12;
 ptr = &structure; /* Yes, you need the & when dealing with
 structures and using pointers to them*/
 printf("%d\n", ptr->x); /* The -> acts somewhat like the * when
 does when it is used with pointers
 It says, get whatever is at that memory
 address Not "get what that memory address
 is"*/
 getchar();
}

Lesson 8: Arrays

Arrays are useful critters that often show up when it would be convenient to have one
name for a group of variables of the same type that can be accessed by a numerical index.
For example, a tic-tac-toe board can be held in an array and each element of the tic-tac-
toe board can easily be accessed by its position (the upper left might be position 0 and the
lower right position 8). At heart, arrays are essentially a way to store many values under
the same name. You can make an array out of any data-type including structures and
classes.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 34�

One way to visualize an array is like this:

[][][][][][]

Each of the bracket pairs is a slot in the array, and you can store information in slot--the
information stored in the array is called an element of the array. It is very much as though
you have a group of variables lined up side by side.

Let's look at the syntax for declaring an array.

int examplearray[100]; /* This declares an array */

This would make an integer array with 100 slots (the places in which values of an array
are stored). To access a specific part element of the array, you merely put the array name
and, in brackets, an index number. This corresponds to a specific element of the array.
The one trick is that the first index number, and thus the first element, is zero, and the last
is the number of elements minus one. The indices for a 100 element array range from 0 to
99. Be careful not to "walk off the end" of the array by trying to access element 100!

What can you do with this simple knowledge? Lets say you want to store a string,
because C has no built-in datatype for strings, you can make an array of characters.

For example:

char astring[100];

will allow you to declare a char array of 100 elements, or slots. Then you can receive
input into it from the user, and when the user types in a string, it will go in the array, the
first character of the string will be at position 0, the second character at position 1, and so
forth. It is relatvely easy to work with strings in this way because it allows support for
any size string you can imagine all stored in a single variable with each element in the
string stored in an adjacent location--think about how hard it would be to store nearly
arbitrary sized strings using simple variables that only store one value. Since we can
write loops that increment integers, it's very easy to scan through a string:

char astring[10];
int i = 0;
/* Using scanf isn't really the best way to do this; we'll talk about that
 in the next tutorial, on strings */
scanf("%s", astring);
for (i = 0; i < 10; ++i)
{
 if (astring[i] == 'a')
 {
 printf("You entered an a!\n");

INTRODUCTION TO C�

VIJAYA COLLEGE Page 35�

 }
}

Let's look at something new here: the scanf function call is a tad different from what
we've seen before. First of all, the format string is '%s' instead of '%d'; this just tells scanf
to read in a string instead of an integer. Second, we don't use the ampersand! It turns out
that when we pass arrays into functions, the compiler automatically converts the array
into a pointer to the first element of the array. In short, the array without any brackets will
act like a pointer. So we just pass the array directly into scanf without using the
ampersand and it works perfectly.

Also, notice that to access the element of the array, we just use the brackets and

put in the index whose value interests us; in this case, we go from 0 to 9, checking each
element to see if it's equal to the character a. Note that some of these values may actually
be uninitialized since the user might not input a string that fills the whole array--we'll
look into how strings are handled in more detail in the next tutorial; for now, the key is
simply to understand the power of accessing the array using a numerical index. Imagine
Multidimensional arrays are arrays that have more than one index: instead of being just a
single line of slots, multidimensional arrays can be thought of as having values that
spread across two or more dimensions. Here's an easy way to visualize a two-dimensional
array:

[][][][][]
[][][][][]
[][][][][]
[][][][][]
[][][][][]

The syntax used to actually declare a two dimensional array is almost the same as

that used for declaring a one-dimensional array, except that you include a set of brackets
for each dimension, and include the size of the dimension. For example, here is an array
that is large enough to hold a standard checkers board, with 8 rows and 8 columns:

 int two_dimensional_array[8][8];

You can easily use this to store information about some kind of game or to write

something like tic-tac-toe. To access it, all you need are two variables, one that goes in
the first slot and one that goes in the second slot. You can make three dimensional, four
dimensional, or even higher dimensional arrays, though past three dimensions, it becomes
quite hard to visualize.

Setting the value of an array element is as easy as accessing the element and
performing an assignment. For instance,

<arrayname>[<arrayindexnumber>] = <value>

for instance,

INTRODUCTION TO C�

VIJAYA COLLEGE Page 36�

/* set the first element of my_first to be the letter c */
my_string[0] = 'c';

or, for two dimensional arrays

<arrayname>[<arrayindexnumber1>][<arrayindexnumber2>] = <whatever>;

Let me note again that you should never attempt to write data past the last element of the
array, such as when you have a 10 element array, and you try to write to the [10] element.
The memory for the array that was allocated for it will only be ten locations in memory,
(the elements 0 through 9) but the next location could be anything. Writing to random
memory could cause unpredictable effects--for example you might end up writing to the
video buffer and change the video display, or you might write to memory being used by
an open document and altering its contents. Usually, the operating system will not allow
this kind of reckless behavior and will crash the program if it tries to write to unallocated
memory.

You will find lots of useful things to do with arrays, from storing information about
certain things under one name, to making games like tic-tac-toe. We've already seen one
example of using loops to access arrays; here is another, more interesting, example!

#include <stdio.h>

int main()
{
 int x;
 int y;
 int array[8][8]; /* Declares an array like a chessboard */

 for (x = 0; x < 8; x++) {
 for (y = 0; y < 8; y++)
 array[x][y] = x * y; /* Set each element to a value */
 }
 printf("Array Indices:\n");
 for (x = 0; x < 8;x++) {
 for (y = 0; y < 8; y++)
 {
 printf("[%d][%d]=%d", x, y, array[x][y]);
 }
 printf("\n");
 }
 getchar();
}

INTRODUCTION TO C�

VIJAYA COLLEGE Page 37�

Just to touch upon a final point made briefly above: arrays don't require a reference
operator (the ampersand) when you want to have a pointer to them. For example:

char *ptr;
char str[40];
ptr = str; /* Gives the memory address without a reference operator(&) */

As opposed to

int *ptr;
int num;
ptr = # /* Requires & to give the memory address to the ptr */

LESSON 9 - STRINGS

What is a String?

Note that along with C-style strings, which are arrays, there are also string literals, such
as "this". In reality, both of these string types are merely just collections of characters
sitting next to each other in memory. The only difference is that you cannot modify string
literals, whereas you can modify arrays. Functions that take a C-style string will be just as
happy to accept string literals unless they modify the string (in which case your program
will crash). Some things that might look like strings are not strings; in particular, a
character inclosed in single quotes, like this, 'a', is not a string. It's a single character,
which can be assigned to a specific location in a string, but which cannot be treated as a
string. (Remember how arrays act like pointers when passed into functions? Characters
don't, so if you pass a single character into a function, it won't work; the function is
expecting a char*, not a char.)

To recap: strings are arrays of chars. String literals are words surrounded by double
quotation marks.

"This is a static string"

Remember that special sauce mentioned above? Well, it turns out that C-style strings are
always terminated with a null character, literally a '\0' character (with the value of 0), so
to declare a string of 49 letters, you need to account for it by adding an extra character, so
you would want to say:

char string[50];

This would declare a string with a length of 50 characters. Do not forget that arrays begin
at zero, not 1 for the index number. In addition, we've accounted for the extra with a null
character, literally a '\0' character. It's important to remember that there will be an extra

INTRODUCTION TO C�

VIJAYA COLLEGE Page 38�

character on the end on a string, just like there is always a period at the end of a sentence.
Since this string terminator is unprintable, it is not counted as a letter, but it still takes up
a space. Technically, in a fifty char array you could only hold 49 letters and one null
character at the end to terminate the string.

Note that something like

char *my_string;

can also be used as a string. If you have read the tutorial on pointers, you can do
something such as:

arry = malloc(sizeof(*arry) * 256);

which allows you to access arry just as if it were an array. To free the memory you
allocated, just use free:

For example:

free (arry);

Using Strings

Strings are useful for holding all types of long input. If you want the user to input his or
her name, you must use a string. Using scanf() to input a string works, but it will
terminate the string after it reads the first space, and moreover, because scanf doesn't
know how big the array is, it can lead to "buffer overflows" when the user inputs a string
that is longer than the size of the string (which acts as an input "buffer").

There are several approaches to handling this problem, but probably the simplest and
safest is to use the fgets function, which is declared in stdio.h.

The prototype for the fgets function is:

char *fgets (char *str, int size, FILE* file);

There are a few new things here. First of all, let's clear up the questions about that funky
FILE* pointer. The reason this exists is because fgets is supposed to be able to read from
any file on disk, not just from the user's keyboard (or other "standard input" device). For
the time being, whenever we call fgets, we'll just pass in a variable called stdin, defined
in stdio.h, which refers to "standard input". This effectively tells the program to read
from the keyboard. The other two arguments to fgets, str and size, are simply the place to
store the data read from the input and the size of the char*, str. Finally, fgets returns str
whenever it successfully read from the input.

INTRODUCTION TO C�

VIJAYA COLLEGE Page 39�

When fgets actually reads input from the user, it will read up to size - 1 characters and
then place the null terminator after the last character it read. fgets will read input until it
either has no more room to store the data or until the user hits enter. Notice that fgets may
fill up the entire space allocated for str, but it will never return a non-null terminated
string to you.

Let's look at an example of using fgets, and then we'll talk about some pitfalls to watch
out for.

For a example:

#include <stdio.h>

int main()
{
 /* A nice long string */
 char string[256];

 printf("Please enter a long string: ");

 /* notice stdin being passed in */
 fgets (string, 256, stdin);

 printf("You entered a very long string, %s", string);

 getchar();
}

Remember that you are actually passing the address of the array when you pass string
because arrays do not require an address operator (&) to be used to pass their addresses,
so the values in the array string are modified.

The one thing to watch out for when using fgets is that it will include the newline
character ('\n') when it reads input unless there isn't room in the string to store it. This
means that you may need to manually remove the input. One way to do this would be to
search the string for a newline and then replace it with the null terminator. What would
this look like? See if you can figure out a way to do it before looking below:

char input[256];
int i;

fgets(input, 256, stdin);

INTRODUCTION TO C�

VIJAYA COLLEGE Page 40�

for (i = 0; i < 256; i++)
{
 if (input[i] == '\n')
 {
 input[i] = '\0';
 break;
 }
}

Here, we just loop through the input until we come to a newline, and when we do, we
replace it with the null terminator. Notice that if the input is less than 256 characters long,
the user must have hit enter, which would have included the newline character in the
string! (By the way, aside from this example, there are other approaches to solving this
problem that use functions from string.h.)

Manipulating C strings using string.h

string.h is a header file that contains many functions for manipulating strings. One of
these is the string comparison function.

int strcmp (const char *s1, const char *s2);

strcmp will accept two strings. It will return an integer. This integer will either be:

Negative if s1 is less than s2.
Zero if s1 and s2 are equal.
Positive if s1 is greater than s2.

Strcmp performs a case sensitive comparison; if the strings are the same except for a
difference in cAse, then they're countered as being different. Strcmp also passes the
address of the character array to the function to allow it to be accessed.

char *strcat (char *dest, const char *src);

strcat is short for "string concatenate"; concatenate is a fancy word that means to add to
the end, or append. It adds the second string to the first string. It returns a pointer to the
concatenated string. Beware this function; it assumes that dest is large enough to hold the
entire contents of src as well as its own contents.

char *strcpy (char *dest, const char *src);

strcpy is short for string copy, which means it copies the entire contents of src into dest.
The contents of dest after strcpy will be exactly the same as src such that strcmp (dest,
src) will return 0.

http://faq.cprogramming.com/cgi-bin/smartfaq.cgi?answer=1044652485&id=1043284385

INTRODUCTION TO C�

VIJAYA COLLEGE Page 41�

size_t strlen (const char *s);

strlen will return the length of a string, minus the termating character ('\0'). The size_t is
nothing to worry about. Just treat it as an integer that cannot be negative, which is what it
actually is. (The type size_t is just a way to indicate that the value is intended for use as a
size of something.)

Here is a small program using many of the previously described functions:

#include <stdio.h> /* stdin, printf, and fgets */
#include <string.h> /* for all the new-fangled string functions */

/* this function is designed to remove the newline from the end of a string
entered using fgets. Note that since we make this into its own function, we
could easily choose a better technique for removing the newline. Aren't
functions great? */
void strip_newline(char *str, int size)
{
 int i;

 /* remove the null terminator */
 for (i = 0; i < size; ++i)
 {
 if (str[i] == '\n')
 {
 str[i] = '\0';

 /* we're done, so just exit the function by returning */
 return;
 }
 }
 /* if we get all the way to here, there must not have been a newline! */
}

int main()
{
 char name[50];
 char lastname[50];
 char fullname[100]; /* Big enough to hold both name and lastname */

 printf("Please enter your name: ");
 fgets(name, 50, stdin);

INTRODUCTION TO C�

VIJAYA COLLEGE Page 42�

 /* see definition above */
 strip_newline(name, 50);

 /* strcmp returns zero when the two strings are equal */
 if (strcmp (name, "Alex") == 0)
 {
 printf("That's my name too.\n");
 }
 else
 {
 printf("That's not my name.\n");
 }
 // Find the length of your name
 printf("Your name is %d letters long", strlen (name));
 printf("Enter your last name: ");
 fgets(lastname, 50, stdin);
 strip_newline(lastname, 50);
 fullname[0] = '\0';
 /* strcat will look for the \0 and add the second string starting at
 that location */
 strcat(fullname, name); /* Copy name into full name */
 strcat(fullname, " "); /* Separate the names by a space */
 strcat(fullname, lastname); /* Copy lastname onto the end of fullname */
 printf("Your full name is %s\n",fullname);

 getchar();

 return 0;
}

Safe Programming

The above string functions all rely on the existence of a null terminator at the end of a
string. This isn't always a safe bet. Moreover, some of them, noticeably strcat, rely on the
fact that the destination string can hold the entire string being appended onto the end.
Although it might seem like you'll never make that sort of mistake, historically, problems

INTRODUCTION TO C�

VIJAYA COLLEGE Page 43�

based on accidentally writing off the end of an array in a function like strcat, have been a
major problem.

Fortunately, in their infinite wisdom, the designers of C have included functions designed
to help you avoid these issues. Similar to the way that fgets takes the maximum number
of characters that fit into the buffer, there are string functions that take an additional
argument to indicate the length of the destination buffer. For instance, the strcpy function
has an analogous strncpy function

char *strncpy (char *dest, const char *src, size_t len);

which will only copy len bytes from src to dest (len should be less than the size of dest or
the write could still go beyond the bounds of the array). Unfortunately, strncpy can lead
to one niggling issue: it doesn't guarantee that dest will have a null terminator attached to
it (this might happen if the string src is longer than dest). You can avoid this problem by
using strlen to get the length of src and make sure it will fit in dest. Of course, if you were
going to do that, then you probably don't need strncpy in the first place, right? Wrong.
Now it forces you to pay attention to this issue, which is a big part of the battle.

LESSON 10 - FILES

C File I/O and Binary File I/O

When accessing files through C, the first necessity is to have a way to access the files.
For C File I/O you need to use a FILE pointer, which will let the program keep track of
the file being accessed. (You can think of it as the memory address of the file or the
location of the file).
For example:

FILE *fp;
To open a file you need to use the fopen function, which returns a FILE pointer. Once
you've opened a file, you can use the FILE pointer to let the compiler perform input and
output functions on the file.

http://cprogramming.com/tutorial/secure.html
http://cprogramming.com/tutorial/secure.html

INTRODUCTION TO C�

VIJAYA COLLEGE Page 44�

FILE *fopen(const char *filename, const char *mode);

In the filename, if you use a string literal as the argument, you need to remember to use
double backslashes rather than a single backslash as you otherwise risk an escape
character such as \t. Using double backslashes \\ escapes the \ key, so the string works as
it is expected. Your users, of course, do not need to do this! It's just the way quoted
strings are handled in C and C++.

The modes are as follows:

r - open for reading
w - open for writing (file need not exist)
a - open for appending (file need not exist)
r+ - open for reading and writing, start at beginning
w+ - open for reading and writing (overwrite file)
a+ - open for reading and writing (append if file exists)

Note that it's possible for fopen to fail even if your program is perfectly correct: you
might try to open a file specified by the user, and that file might not exist (or it might be
write-protected). In those cases, fopen will return 0, the NULL pointer.

Here's a simple example of using fopen:

FILE *fp;
fp=fopen("c:\\test.txt", "r");

This code will open test.txt for reading in text mode. To open a file in a binary mode you
must add a b to the end of the mode string; for example, "rb" (for the reading and writing
modes, you can add the b either after the plus sign - "r+b" - or before - "rb+")

To close a function you can use the function

int fclose(FILE *a_file);

fclose returns zero if the file is closed successfully.

An example of fclose is

fclose(fp);

To work with text input and output, you use fprintf and fscanf, both of which are similar
to their friends printf and scanf except that you must pass the FILE pointer as first
argument. For example:

FILE *fp;
fp=fopen("c:\\test.txt", "w");
fprintf(fp, "Testing...\n");

It is also possible to read (or write) a single character at a time--this can be useful if you
wish to perform character-by-character input (for instance, if you need to keep track of
every piece of punctuation in a file it would make more sense to read in a single character

INTRODUCTION TO C�

VIJAYA COLLEGE Page 45�

than to read in a string at a time.) The fgetc function, which takes a file pointer, and
returns an int, will let you read a single character from a file:

int fgetc (FILE *fp);

Notice that fgetc returns an int. What this actually means is that when it reads a normal
character in the file, it will return a value suitable for storing in an unsigned char
(basically, a number in the range 0 to 255). On the other hand, when you're at the very
end of the file, you can't get a character value--in this case, fgetc will return "EOF",
which is a constnat that indicates that you've reached the end of the file. To see a full
example using fgetc in practice, take a look at the example here.

The fputc function allows you to write a character at a time--you might find this useful if
you wanted to copy a file character by character. It looks like this:

int fputc(int c, FILE *fp);

Note that the first argument should be in the range of an unsigned char so that it is a valid
character. The second argument is the file to write to. On success, fputc will return the
value c, and on failure, it will return EOF.

Binary I/O

For binary File I/O you use fread and fwrite.

The declarations for each are similar:

size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE
*a_file);

size_t fwrite(const void *ptr, size_t size_of_elements, size_t number_of_elements, FILE
*a_file);

Both of these functions deal with blocks of memories - usually arrays. Because they
accept pointers, you can also use these functions with other data structures; you can even
write structs to a file or a read struct into memory.

Let's look at one function to see how the notation works.

fread takes four arguments. Don't by confused by the declaration of a void *ptr; void
means that it is a pointer that can be used for any type variable. The first argument is the
name of the array or the address of the structure you want to write to the file. The second
argument is the size of each element of the array; it is in bytes. For example, if you have
an array of characters, you would want to read it in one byte chunks, so size_of_elements
is one. You can use the sizeof operator to get the size of the various datatypes; for
example, if you have a variable int x; you can get the size of x with sizeof(x);. This usage
works even for structs or arrays. Eg, if you have a variable of a struct type with the name
a_struct, you can use sizeof(a_struct) to find out how much memory it is taking up.

http://www.cprogramming.com/tutorial/c/lesson14.html

INTRODUCTION TO C�

VIJAYA COLLEGE Page 46�

e.g.,

sizeof(int);

The third argument is simply how many elements you want to read or write; for example,
if you pass a 100 element array, you want to read no more than 100 elements, so you pass
in 100.

The final argument is simply the file pointer we've been using. When fread is used, after
being passed an array, fread will read from the file until it has filled the array, and it will
return the number of elements actually read. If the file, for example, is only 30 bytes, but
you try to read 100 bytes, it will return that it read 30 bytes. To check to ensure the end of
file was reached, use the feof function, which accepts a FILE pointer and returns true if
the end of the file has been reached.

fwrite is similar in usage, except instead of reading into the memory you write from
memory into a file.

For example,

FILE *fp;
fp=fopen("c:\\test.bin", "wb");
char x[10]="ABCDEFGHIJ";
fwrite(x, sizeof(x[0]), sizeof(x)/sizeof(x[0]), fp);

Lesson 11: Typecasting
Typecasting is a way to make a variable of one type, such as an int, act like another type,
such as a char, for one single operation. To typecast something, simply put the type of
variable you want the actual variable to act as inside parentheses in front of the actual
variable. (char)a will make 'a' function as a char.

For example:

#include <stdio.h>

int main()
{
 /* The (char) is a typecast, telling the computer to interpret the 65 as a
 character, not as a number. It is going to give the character output of
 the equivalent of the number 65 (It should be the letter A for ASCII).
 Note that the %c below is the format code for printing a single character
 */

INTRODUCTION TO C�

VIJAYA COLLEGE Page 47�

 printf("%c\n", (char)65);
 getchar();
}

One use for typecasting for is when you want to use the ASCII characters. For example,
what if you want to create your own chart of all 256 ASCII characters. To do this, you
will need to use to typecast to allow you to print out the integer as its character
equivalent.

 #include <stdio.h>

int main()
{
 for (int x = 0; x < 256; x++) {
 /* Note the use of the int version of x to output a number and the use
 * of (char) to typecast the x into a character which outputs the
 * ASCII character that corresponds to the current number
 */
 printf("%d = %c\n", x, (char)x);
 }
 getchar();

}

If you were paying careful attention, you might have noticed something kind of strange:
when we passed the value of x to printf as a char, we'd already told the compiler that we
intended the value to be treated as a character when we wrote the format string as %c.
Since the char type is just a small integer, adding this typecast actually doesn't add any
value!

So when would a typecast come in handy? One use of typecasts is to force the correct
type of mathematical operation to take place. It turns out that in C (and other
programming languages), the result of the division of integers is itself treated as an
integer: for instance, 3/5 becomes 0! Why? Well, 3/5 is less than 1, and integer division
ignores the remainder.

On the other hand, it turns out that division between floating point numbers, or even
between one floating point number and an integer, is sufficient to keep the result as a
floating point number. So if we were performing some kind of fancy division where we
didn't want truncated values, we'd have to cast one of the variables to a floating point
type. For instance, (float)3/5 comes out to .6, as you would expect!

When might this come up? It's often reasonable to store two values in integers. For
instance, if you were tracking heart patients, you might have a function to compute their
age in years and the number of heart times they'd come in for heart pain. One operation
you might conceivably want to perform is to compute the number of times per year of life
someone has come in to see their physician about heart pain. What would this look like?

INTRODUCTION TO C�

VIJAYA COLLEGE Page 48�

/* magical function returns the age in years */
int age = getAge();
/* magical function returns the number of visits */
int pain_visits = getVisits();

float visits_per_year = pain_visits / age;

The problem is that when this program is run, visits_per_year will be zero unless the
patient had an awful lot of visits to the doc. The way to get around this problem is to cast
one of the values being divided so it gets treated as a floating point number, which will
cause the compiler to treat the expression as if it were to result in a floating point number:

float visits_per_year = pain_visits / (float)age;
/* or */
float visits_per_year = (float)pain_visits / age;

Lesson 12: Accepting command line arguments
In C it is possible to accept command line arguments. Command-line arguments are
given after the name of a program in command-line operating systems like DOS or
Linux, and are passed in to the program from the operating system. To use command line
arguments in your program, you must first understand the full declaration of the main
function, which previously has accepted no arguments. In fact, main can actually accept
two arguments: one argument is number of command line arguments, and the other
argument is a full list of all of the command line arguments.

The full declaration of main looks like this:

int main (int argc, char *argv[])

The integer, argc is the argument count. It is the number of arguments passed into the
program from the command line, including the name of the program.

The array of character pointers is the listing of all the arguments. argv[0] is the name of
the program, or an empty string if the name is not available. After that, every element

INTRODUCTION TO C�

VIJAYA COLLEGE Page 49�

number less than argc is a command line argument. You can use each argv element just
like a string, or use argv as a two dimensional array. argv[argc] is a null pointer.

How could this be used? Almost any program that wants its parameters to be set when it
is executed would use this. One common use is to write a function that takes the name of
a file and outputs the entire text of it onto the screen.

#include <stdio.h>

int main (int argc, char *argv[])
{
 if (argc != 2) /* argc should be 2 for correct execution */
 {
 /* We print argv[0] assuming it is the program name */
 printf("usage: %s filename", argv[0]);
 }
 else
 {
 // We assume argv[1] is a filename to open
 FILE *file = fopen(argv[1], "r");

 /* fopen returns 0, the NULL pointer, on failure */
 if (file == 0)
 {
 printf("Could not open file\n");
 }
 else
 {
 int x;
 /* read one character at a time from file, stopping at EOF, which
 indicates the end of the file. Note that the idiom of "assign
 to a variable, check the value" used below works because
 the assignment statement evaluates to the value assigned. */
 while ((x = fgetc(file)) != EOF)
 {
 printf("%c", x);
 }
 }
 fclose(file);
 }
}

This program is fairly short, but it incorporates the full version of main and even
performs a useful function. It first checks to ensure the user added the second argument,
theoretically a file name. The program then checks to see if the file is valid by trying to
open it. This is a standard operation, and if it results in the file being opened, the the

INTRODUCTION TO C�

 Page 50�VIJAYA COLLEGE

return value of fopen will be a valid FILE*; otherwise, it will be 0, the NULL pointer.
After that, we just execute a loop to print out one character at a time from the file. The
code is self-explanatory, but is littered with comments; you should have no trouble
understanding its operation this far into the tutorial. :-)

	Explaining your Code
	Using Variables
	Reading input
	Basic If Syntax
	Else
	Else if
	More interesting conditions using boolean operators
	Lesson 3: Loops
	Lesson 4: Functions
	Now that you should have learned about variables, loops, and conditional statements it is time to learn about functions. You should have an idea of their uses as we have already used them and defined one in the guise of main. cin.get() is an example of a function. In general, functions are blocks of code that perform a number of pre-defined commands to accomplish something productive.

	The mult function is actually defined below main. Due to its prototype being above main, the compiler still recognizes it as being defined, and so the compiler will not give an error about mult being undefined. As long as the prototype is present, a function can be used even if there is no definition. However, the code cannot be run without a definition even though it will compile. The prototype and definition can be combined into one also. If mult were defined before it is used, we could do away with the prototype because the definition can act as a prototype as well.
	Return is the keyword used to force the function to return a value. Note that it is possible to have a function that returns no value. If a function returns void, the retun statement is valid, but only if it does not have an expression. In otherwords, for a function that returns void, the statement "return;" is legal, but redundant.
	The most important functional (Pun semi-intended) question is why do we need a function? Functions have many uses. For example, a programmer may have a block of code that he has repeated forty times throughout the program. A function to execute that code would save a great deal of space, and it would also make the program more readable. Also, having only one copy of the code makes it easier to make changes. Would you rather make forty little changes scattered all throughout a potentially large program, or one change to the function body? So would I.
	Another reason for functions is to break down a complex program into logical parts. For example, take a menu program that runs complex code when a menu choice is selected. The program would probably best be served by making functions for each of the actual menu choices, and then breaking down the complex tasks into smaller, more manageable tasks, which could be in their own functions. In this way, a program can be designed that makes sense when read. And has a structure that is easier to understand quickly. The worst programs usually only have the required function, main, and fill it with pages of jumbled code.
	Recursion
	Lesson 5: switch case
	Lesson 6: An introduction to pointers
	What are pointers? Why should you care?
	Pointer Syntax
	Pointing to Something: Retrieving an Address
	Taking Stock of Pointers
	What are pointers? Why should you care?
	Pointer Syntax
	Pointing to Something: Retrieving an Address
	Taking Stock of Pointers

	Lesson 8: Arrays
	What is a String?
	Using Strings
	Manipulating C strings using string.h
	Safe Programming
	Binary I/O

	Lesson 11: Typecasting
	Lesson 12: Accepting command line arguments

