Computer Arithmetic

<u>Modulo Arithmetic</u>: produces the integer value that is the remainder of an integer division.

1 --> 9

Goes up to a certain point then restarts. Examples:

a) Odometer: 99999 + 1 --> start over.
b) Clock: 10 + 4 --> 12.

Human beings traditionally use ten as the number to count with (Base 10).

[Babylon apparently used sixty (Base 60), a sexaqesimal system. It can be divided evenly by two, three, four, five, six, ten, twelve, fifteen, twenty and thirty.]

The second digit, counting from the right, indicates the base.

For example:

Four-thousand five hundred sixty-seven

= 4567 = 4 thousands plus 5 hundreds plus 6 tens plus 7 ones =

4 5 6 7
Ones =
$$10^{0} = 1$$

Base (in this example 10) = $10^{1} = 10$
Base³ = $10^{3} = 1000$
= $(4 \times 10^{3}) + (5 \times 10^{2}) + (6 \times 10^{1}) + (7 \times 10^{0})$

The above example can be applied to any base.

As you saw in the video *Giant Brains*, Konrad Zuse decided to use the simplest types of switches, ON/OFF – Boolean, for his computer.

Everything inside a computer must be represented with some combination of ON and OFF. We represent ON = 1 and OFF = 0. Since only two symbols are used we refer to this system as <u>Base 2</u> = the **Binary System**.

Analogy with a chandelier:

27	2^{6}	2^{5}	2^4	2^{3}	2^2	2^1	2^{0}
=	=	=	=	=	=	=	=
128	64	32	16	8	4	2	1

For example:

1000 1001

Binary (Base 2)

=

Base 2 (Binary)	Base 10 (Decimal)
2^7 1 x 128	128
$2^6 0 \ge 64$	0
2^5 0 x 32	0
2^4 0 x 16	0
2^3 1 x 8	8
$2^2 0 \ge 4$	0
$2^1 0 \ge 2$	0
2^{0} 1 x 1	1
	Total: 137

To Convert Decimal to Binary

Example: 65 decimal

2 ⁷	2^{6}	2^{5}	2^4	2^{3}	2^{2}	2^{1}	2^{0}
=	=	=	=	=	=	=	=
128	64	32	16	8	4	2	1
0	1	0	0	0	0	0	1

Or

Using the <u>Method of Division</u>:

$ \frac{1}{2} + 0 $
2 4 + 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 32 + 1
2 65

 \equiv

1000001

Binary Addition

Rules: 0 + 0 = 0 1 + 0 = 1 1 + 1 = 101 + 1 + 1 = 11

Example:

There are eight bits (ON/OFF states) in a Byte:

Byte = 8 Bits

Working with 4 Bit examples, add the following:

<u>Binary</u> 0101 0010	Decimal 5 2
0111	7
<u>Binary</u> 0101 <u>0011</u> 1000	$\frac{\text{Decimal}}{5}$ $\frac{3}{8}$
<u>Binary</u> 0101 <u>0110</u> 1011	<u>Decimal</u> 5 <u>6</u> 11
Binary 0111 1011 10010	<u>Decimal</u>
	Overflow! Using a 4 bit machine.

ASCII Code

(American Standard Code for Information Interchange)

Examples:

$$A = 65$$

 $B = 66$
 $C = 67$
 $a = 97$
 $b = 98$
 $c = 99$

Exercise: Convert the above to Binary using an 8 bit system.

In lab we have 32 bit machines; (note: the definition of a byte does not change, it still equals 8 bits).

With more bits we can work with larger numbers.

Fore example: 2^8

2

=

2^{8}	27	2^{6}	2^{5}	2^4	2^{3}	2^{2}	2^{1}	2^{0}
=	=	=	=	=	=	=	=	=
256	128	64	32	16	8	4	2	1
1	0	0	0	0	0	0	0	0

We commonly refer to a **K** as being equal to 1000. However it really is $2^{10} = 1024$ since we are dealing with powers of 2 not 10!

MB = a little over a million. GB = a little over a billion. TB = a little over a trillion.

Binary Subtraction

Example:

a-b = a + (-b)

Integers: negative and positive. Binary: positive only (unsigned).

2's Complement

Decimal Example:

$$27 - 11$$

 $=$
 $27_{10} - 11_{10}$
 $=$
 $27_{10} + (-11_{10})$
 $= 16_{10}$

A. Convert:

Decimal	<u>Binary</u>
27 ₁₀	0110112
11_{10}	0010112

B. Get 2's Complement:

B1. Flip the Bits then add 1: (Add a number to its complement and one gets all 0's).

001011	(Original number)
110100	(Flip the Bits)
+ 1	(Add 1)
110101	(2's Complement)

C. Add the two numbers:

$$\begin{array}{r} 011011 \\ + & \underline{110101} \\ 010000 \end{array} \quad \text{(Restrict to 6 bits for answer; extra bit lost as overflow.} \end{array}$$

Example: Convert 56_{10} to binary, flip the bits, add 1 and add to its complement.

Hint: Any binary number + its complement = 0.

Example: $16-5 = 16_{10} - 5_{10} = 16_{10} + (-5_{10}) = 11_{10}$

1. Convert:

	2^{5}	2^{4}	2^{3}	2^2	2^1	2^{0}
	=	=	=	=	=	=
	32	16	8	4	2	1
$16_{10} =$	0	1	0	0	0	0
$5_{10} =$	0	0	0	1	0	1

2. Get 2's Complement:

000101	Original number (5_{10})
111010	Flip the bits
111011	2's complement

3. Add the two numbers:

Example:
$$32 - 16 = 32_{10} - 16_{10} = 32_{10} + (-16_{10}) = 16_{10}$$

1. Convert:

	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
	=	=	=	=	=	=	=
	64	32	16	8	4	2	1
$32_{10} =$	0	1	0	0	0	0	0
$16_{10} =$	0	0	1	0	0	0	0

2. Get 2's Complement:

0010000 Original number (16_{10})

1101111	Flip the bits
+1	Add 1
1110000	2's complement

3. Add the two numbers:

Example:
$$56 - 16 = 56_{10} - 16_{10} = 56_{10} + (-16_{10}) = 40_{10}$$

1. Convert:

	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
	=	=	=	=	=	=	=
	64	32	16	8	4	2	1
$56_{10} =$	0	1	1	1	0	0	0
$16_{10} =$	0	0	1	0	0	0	0

2. Get 2's Complement:

0010000	Original number (16_{10})
1101111 +1	Flip the bits Add 1
1110000	2's complement

3. Add the two numbers:

Hexadecimal (Hex)

- Base 16.
- For large numbers easier to work with than binary for most people.
- An integer on a 32 bit machine, (the type we use in lab), can be written as 4 hexadecimal digits.
- Letters are used for the numbers $10 \rightarrow 15$ as follows:
 - A = 10 B = 11 C = 12 D = 13 E = 14F = 15

To interpret as base 10 numbers we need to know the powers of 16:

		Ba	se		
16^{3}	16^{2}	16 ¹	16^{0}		
4096	256	16	1		

Example:
$$F29 = (F * 16^2) + (2 * 16^1) + (9 * 16^0)$$

= $(15 * 256) + (2 * 16) + (9 * 1)$
= 3881 in base 10

An advantage of hexadecimal is how easy it is to convert from Base 2 (binary) and back.

To Convert:

Every hexadecimal digit is broken down into a 4 digit binary number. These digits are just written down in the same order as the hexadecimal number and one has the equivalent binary (base 2) number.

Example: F29 hexadecimal converted to binary

Example: C18 hexadecimal converted to binary

Example: Convert 3567₁₀ from Decimal to Binary to Hexadecimal.

3567 (Decimal) =

211	2^{10}	2 ⁹	2^{8}	2^{7}	2^{6}	2 ⁵	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1	1	0	1	1	1	1	0	1	1	1	1

