Computer Arithmetic

Modulo Arithmetic: produces the integer value that is the remainder of an integer division.

1 --> 9
Goes up to a certain point then restarts. Examples:
a) Odometer: $99999+1$--> start over.
b) Clock: $10+4$--> 12 .

Human beings traditionally use ten as the number to count with (Base 10).
[Babylon apparently used sixty (Base 60), a sexaqesimal system. It can be divided evenly by two, three, four, five, six, ten, twelve, fifteen, twenty and thirty.]

The second digit, counting from the right, indicates the base.
For example:
Four-thousand five hundred sixty-seven
$=$

4567
$=$

4 thousands plus
5 hundreds plus
6 tens plus
7 ones

The above example can be applied to any base.

As you saw in the video Giant Brains, Konrad Zuse decided to use the simplest types of switches, ON/OFF - Boolean, for his computer.

Everything inside a computer must be represented with some combination of ON and OFF. We represent $\mathrm{ON}=1$ and $\mathrm{OFF}=0$. Since only two symbols are used we refer to this system as Base 2 $=$ the Binary System.

Analogy with a chandelier:

2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
$=$	$=$	$=$	$=$	$=$	$=$	$=$	$=$
128	64	32	16	8	4	2	1

For example:

Base 2 (Binary)	Base 10 (Decimal)
$2^{7} 1 \times 128$	128
$2^{6} 0 \times 64$	0
2^{5}	0×32
2^{4}	0×16
2^{3}	1×8
2^{2}	0×4
2^{1}	0×2
2^{0}	1×1

To Convert Decimal to Binary
Example: 65 decimal

$\begin{aligned} & 2^{7} \\ & = \\ & 128 \end{aligned}$	$\begin{aligned} & 2^{6} \\ & = \\ & 64 \end{aligned}$	$\begin{aligned} & 2^{5} \\ & = \\ & 32 \end{aligned}$	$\begin{aligned} & 2^{4} \\ & = \\ & 16 \end{aligned}$	$\begin{aligned} & 2^{3} \\ & = \\ & 8 \end{aligned}$	$\begin{aligned} & 2^{2} \\ & = \\ & 4 \end{aligned}$	2 $=$ 2	2^{0} $=$ 1
0	1	0	0	0	0	0	1

Using the Method of Division:

1
$2 \longdiv { 1 } + \mathbf { 0 }$
$2 \sqrt[0]{2}$
$2 \longdiv { 4 } + \mathbf { 0 }$
$2 \sqrt{8}+\mathbf{0}$
$2 \sqrt{16}+\mathbf{0}$
$2 \sqrt{32}+\mathbf{1}$
$2 \sqrt{65}$

$=$
1000001

Binary Addition

Rules:

$$
\begin{aligned}
& 0+0=0 \\
& 1+0=1 \\
& 1+1=10 \\
& 1+1+1=11
\end{aligned}
$$

Example:

$$
10101101
$$

1011110
100001011

There are eight bits (ON/OFF states) in a Byte:

$$
\text { Byte }=8 \text { Bits }
$$

Working with 4 Bit examples, add the following:

Binary
0101
0010
0111

Decimal
5
2

7

Binary
Decimal
0101
$\frac{0011}{1000}$
5
$\frac{3}{8}$

Binary
0101
$\underline{0110}$
1011

Decimal
5
6
11

Binary
Decimal
0111
1011
10010

Overflow! Using a 4 bit machine.

ASCII Code

(American Standard Code for Information Interchange)
Examples:

$$
\begin{aligned}
& A=65 \\
& B=66 \\
& C=67 \\
& a=97 \\
& b=98 \\
& c=99
\end{aligned}
$$

Exercise: Convert the above to Binary using an 8 bit system.

In lab we have 32 bit machines; (note: the definition of a byte does not change, it still equals 8 bits).

With more bits we can work with larger numbers.
Fore example:
2^{8}

$\begin{aligned} & 2^{8} \\ & = \\ & 256 \end{aligned}$	$\begin{aligned} & 2^{7} \\ & = \\ & 128 \end{aligned}$	$\begin{aligned} & 2^{6} \\ & = \\ & 64 \end{aligned}$	$\begin{aligned} & 2^{5} \\ & = \\ & 32 \end{aligned}$	$\begin{aligned} & 2^{4} \\ & = \\ & 16 \end{aligned}$	2^{3} $=$ 8	2^{2} $=$ 4	2^{1} $=$ 2	2^{0} $=$ 1
1	0	0	0	0	0	0	0	0

We commonly refer to a \mathbf{K} as being equal to 1000 . However it really is $2^{10}=1024$ since we are dealing with powers of 2 not 10 !
$\mathrm{MB}=$ a little over a million.
$\mathrm{GB}=$ a little over a billion.
$\mathrm{TB}=$ a little over a trillion.

Binary Subtraction

Example:

$$
a-b=a+(-b)
$$

Integers: negative and positive.
Binary: positive only (unsigned).

2's Complement

Decimal Example:

$$
27-11
$$

$$
=
$$

$$
27_{10}-11_{10}
$$

$$
=
$$

$$
27_{10}+\left(-11_{10}\right)
$$

$$
=16_{10}
$$

A. Convert:

$\underline{\text { Decimal }}$	$\underline{\text { Binary }}$
27_{10}	011011_{2}
11_{10}	001011_{2}

B. Get 2's Complement:

B1. Flip the Bits then add 1:
(Add a number to its complement and one gets all 0 's).

001011	(Original number)
110100	(Flip the Bits)
+1	(Add 1)
110101	(2's Complement)

C. Add the two numbers:

$$
\begin{aligned}
& 011011 \\
+ & \\
01010000 & \text { (Restrict to } 6 \text { bits for answer; extra bit lost as overflow. }
\end{aligned}
$$

Example: Convert 56_{10} to binary, flip the bits, add 1 and add to its complement.
Hint: Any binary number + its complement $=0$.

Example: $\quad 16-5=16_{10}-5_{10}=16_{10}+\left(-5_{10}\right)=11_{10}$

1. Convert:

	$\begin{aligned} & 2^{5} \\ & = \\ & 32 \end{aligned}$	$\begin{aligned} & 2^{4} \\ & = \\ & 16 \end{aligned}$	2^{3} $=$ 8	2^{2} $=$ 4	2 $=$ 2	2^{0} $=$ 1
$16_{10}=$	0	1	0	0	0	0
$5_{10}=$	0	0	0	1	0	1

2. Get 2's Complement:

000101	Original number $\left(5_{10}\right)$
111010	Flip the bits
$\frac{+1}{111011}$	Add 1
2's complement	

3. Add the two numbers:

1	
010000	16_{10} $\underline{111011}$ 001011
Answer (11_{10}) of 5_{10} (Hint: compare with Binary table)	
Overflow	

Example: $\quad 32-16=32_{10}-16_{10}=32_{10}+\left(-16_{10}\right)=16_{10}$

1. Convert:

2^{6} $=$ 64	2^{5} $=$ 32	2^{4} $=$ 16	2^{3} $=$ 8	2^{2} $=$ 4	2^{1} $=$ 2	2^{0} $=$ 1
0	1	0	0	0	0	0
0	0	1	0	0	0	0

2. Get 2's Complement:
$0010000 \quad$ Original number (16_{10})
$1101111 \quad$ Flip the bits
$\begin{aligned}+1 & \text { Add 1 } \\ 1110000 & \text { 2's complement }\end{aligned}$
3. Add the two numbers:

1	0100000	32_{10}
$\underline{1110000}$	2's complement of 16_{10} 0010000	Answer $\left(16_{10}\right)$

Overflow

Example: $\quad 56-16=56_{10}-16_{10}=56_{10}+\left(-16_{10}\right)=40_{10}$

1. Convert:

	$\begin{aligned} & 2^{6} \\ & = \\ & 64 \end{aligned}$	2^{5} $=$ 32	2^{4} $=$ 16	2^{3} $=$ 8	2^{2} $=$ 4	2 $=$ 2	2^{0} $=$ 1
$56_{10}=$	0	1	1	1	0	0	0
$16_{10}=$	0	0	1	0	0	0	0

2. Get 2's Complement:
$0010000 \quad$ Original number (16_{10})
1101111 Flip the bits
+1 Add 1
1110000 2's complement
3. Add the two numbers:

1	0111000 1110000 0101000	56_{10} 2's complement of 16_{10} Answer $\left(40_{10}\right)$

Hexadecimal (Hex)

- Base 16.
- For large numbers easier to work with than binary for most people.
- An integer on a 32 bit machine, (the type we use in lab), can be written as 4 hexadecimal digits.
- Letters are used for the numbers $10 \rightarrow 15$ as follows:
$\mathrm{A}=10$
$B=11$
$\mathrm{C}=12$
D $=13$
$\mathrm{E}=14$
$\mathrm{F}=15$

To interpret as base 10 numbers we need to know the powers of 16 :

			Base	
16^{3}	16^{2}	16^{1}	16^{0}	
4096	256	16	1	

$$
\text { Example: } \quad \begin{aligned}
\mathrm{F} 29 & =\left(\mathrm{F} * 16^{2}\right)+\left(2 * 16^{1}\right)+\left(9 * 16^{0}\right) \\
& =(15 * 256)+(2 * 16)+(9 * 1) \\
& =3881 \text { in base } 10
\end{aligned}
$$

An advantage of hexadecimal is how easy it is to convert from Base 2 (binary) and back.

To Convert:

Every hexadecimal digit is broken down into a 4 digit binary number. These digits are just written down in the same order as the hexadecimal number and one has the equivalent binary (base 2) number.

Example: F29 hexadecimal converted to binary

2^{3}	2^{2}	2^{1}	2^{0}
8	4	2	1

$($ base 2$)=3881($ base 10$)$

Example: E16 hexadecimal converted to binary

2^{3}	2^{2}	2^{1}	2^{0}
8	4	2	1

(base 2) $=3606$ (base 10)

Example: A14 hexadecimal converted to binary

2^{3}	2^{2}	2^{1}	2^{0}
8	4	2	1

$($ base 2$)=2580($ base 10$)$

Example: C18 hexadecimal converted to binary

2^{3}	2^{2}	2^{1}	2^{0}
8	4	2	1

110000011000 (base 2) $=3096$ (base 10)

Example: Convert 3567_{10} from Decimal to Binary to Hexadecimal.
$3567($ Decimal $)=$

2^{11}	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1	1	0	1	1	1	1	0	1	1	1	1

$($ Binary $)=$

DEF (Hexadecimal)

$$
3567_{10}=\underline{1101} \underline{1110} \underline{1111} 2=\mathrm{DEF}_{16}
$$

