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Syllabus : Crystal systems and X-rays: Crystal systems-Bravais lattice; Miller 

indices– Spacing between lattice planes of cubic crystals, Continuous and 

characteristic X-ray spectra; Moseley's law, Scattering of X-rays - Compton effect, 

Bragg's law.   

 

Introduction : A solid material has two basic properties, namely rigidity and 

elasticity. Thus, solids have definite shape and size. The following tabular 

column gives the types of solids 

Types of 

solids 

Definition Examples 

single 

crystals 

Are solids having a regular, repetitive 

arrangement of atoms or molecules. They 

have Long range order and 3 – dimensional 

periodicity. Here the crystal lattice of the 

entire sample is continuous and unbroken 

to the edges of the sample 

Quartz, salt, 

Iceland spar, 

diamond, topaz 

etc.. 

polycrystalli

ne crystals 

Or multicrystalline materials (microscopic 

crystals) are solids that are composed of 

many crystallites or grains of varying size 

and orientation. 

Metals like 

copper, sodium, 

Magnesium etc…, 

some ceramics, 

rock, ice… 

Quasicrysta

ls 

Long range order and no 3 –dimensional 

periodicity 

Al72Ni20Co8 

Amorphous 

materials 

Are solids that lack long range order, i.e 

disordered or random atomic structure 

Glass, plastic, 

silicon 

 

Crystallography is a branch of science that deals with the geometric description 

of crystals and their internal atomic arrangement. 

It is the symmetry of a crystal that has profound influence on its properties. 

Crystalline materials are solids with an atomic structure based on a regular 

repeated pattern across its whole volume. At long range length scales, each atom 

is related to every other equivalent atom in the structure by translational or 

rotational symmetry.    

In crystallography, geometrical properties of the crystal are of interest. Thus an 

atom or a group of atoms are replaced by a geometric 

point.  

Crystal lattice : An infinite array of points in space 

is called the crystal lattice. Each point has an 

identical surroundings to all others as shown below. 
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Arrays are arranged in a periodic manner. The square shown represents a unit 

cell which is primitive. (This is in two dimension) 

Basis and Crystal structure: 

Every lattice point can be associated 

with one or more unit assembly of 

atoms or molecules identical in 

composition called Basis. 

 

 

The regular periodic three-dimensional arrangement of Basis is called Crystal 

Structure. Thus lattice + basis = crystal structure.  

Space lattice is imaginary. Crystal structure is real. 

 

Unit cell and Lattice parameters 

1. Atoms or groups of atoms forming building blocks 

of the smallest acceptable size of the whole volume 

of the crystal is defined as a unit cell 

2. A unit cell is chosen to represent the symmetry of 

the crystal.  

3. They are the basic building blocks of the crystal.  

4. When these unit cells are translated in three 

dimensions, they will generate the crystal.  

5. Each crystal lattice is described by a type of unit 

cell.  

6. Each unit cell is described by three vectors a, b 

and c called the length of the sides and the 

interfacial angles α, β, γ  between them. They are 

called lattice parameters 

 

Primitive Cell  

Primitive cell is defined as a geometrical shape which, when repeated indefinitely 

in three dimensions, will fill all space and it consists of lattice points only at 

corners. A unit cells may be primitive (simple) or Non-primitive (body centered, 

base centered, face centered). 

Bravais lattice 

A Bravais lattice is one in which all lattice points are identical in composition. 

Bravais showed that identical points can be arranged spatially to produce 14 

types of regular pattern. These 14 space lattices are called Bravais lattices. 

According to Bravais, there are 14 lattices corresponding to seven crystal 

structures. They are cubic, tetragonal, orthorhombic, monoclinic, triclinic, 

trigonal (rhombohedral) and hexagonal.   
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SL.N
o. 

Crystal system 

Types of 

Bravais 
lattices 

Number 

of Bravais 
lattices 

Lattice 
parameters 

1 Cubic P, I, F 3 
𝑎 = 𝑏 = 𝑐 

   𝛼 =  𝛽 =  𝛾 = 
90 

2 Tetragonal P, I 2 
𝑎 = 𝑏 ≠  𝑐 

𝛼 =  𝛽 =  𝛾 = 90 

3 Orthorhombic P, I, F, C 4 
𝑎 ≠ 𝑏 ≠ 𝑐 

    𝛼 =  𝛽 =  𝛾 = 90 

4 Monoclinic P, C 2 
𝑎 ≠ 𝑏 ≠ 𝑐 

𝛼 = 𝛾 = 90 ≠ 𝛽 

5 Triclinic P 1 
𝑎 ≠ 𝑏 ≠ 𝑐 
𝛼 ≠ 𝛽 ≠ 𝛾 

6 
Rhombohedral 

(Trigonal) 
P 1 

𝑎 = 𝑏 = 𝑐 

  𝛼 =  𝛽 =  𝛾  90 

7 Hexagonal P 1 
𝑎 = 𝑏 ≠ 𝑐 

𝛼 =  𝛽 = 90 ,  𝛾 =
120 

 

In the above structures it is observed that the types of lattices are four.  

(1) Simple denoted by P having lattice points only at the edges of the unit cell.  

(2) Body centred denoted by I having a lattice point at the centre of the unit cell 

along with the edges. 

(3) Face centred denoted by F having lattice points at the centres of all the faces 

of the unit cell along with edges. 

(4) Base centred denoted by C having lattice points at the centres of the bases 

of the unit cell along with the edges.  

Coordination number : It is defined as the number of particle immediately 

adjacent to each particle in the crystal lattice. 

 It is characteristic of a given space lattice and is determined by an 

inspection of the model. In a simple cubic lattice, each particle is  

adjoined by six other particles and so the coordination number is  

six. The coordination number for body centred and face centred  

cubic lattice are 8 and 12 respectively. 
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Crystal symmetry :The definite ordered arrangement of faces and edges of a 

crystal is known as crystal symmetry. Study of symmetry is a powerful tool for 

the understanding the crystal structure.  

     A crystal possess different symmetry elements. They are described by the 

symmetry operations. A symmetry operation is one that leaves the crystal and 

its environment invariant or unchanged after the operation.  

     Symmetry operations performed about a point, line or a plane in a crystal are 

called point group symmetry operation. Symmetry operation performed by 

translation as well as rotation are called space group symmetry operations.  

The point group symmetry elements are 

 (1) centre of symmetry or inversion centre – A cube has a centre 

called centre of symmetry from where all edges are of the same 

distance.       

(2) Plane of symmetry or reflection 

symmetry – Here the crystal is said to 

have plane of symmetry if the crystal 

remains unchanged even after reflection 

about a plane. A cube has nine such symmetries. Some examples are shown 

here.  

(3) Rotation symmetry – Here a crystal is said to possess rotational symmetry 

about an axis if the body after rotation by an angle remains the same as before. 

The axis said to be n – fold if the angle of rotation is given by 
360

𝑛
 . For example, 

a cubic crystal has four fold rotation axis, as rotation by 90 degree of the crytsl 

leaves it invariant. Other possibilities are  60o (n = 6), 90o (n = 4), 120o (n = 3) 

and 1800 (n = 2). 

Miller indices : 

➢ Miller indices is defined as the reciprocal of the intercepts made by the 

plane on the crystallographic axes when reduced to smallest numbers 

➢ Notation system in crystallography to indicate the internal planes of a 

crystal. 

➢ The crystal planes are a set of parallel planes used to determine the shape 

and structure of the unit cell and crystal lattice.  

➢ The miller indices identify the set of planes in the crystal with which the 

crystal structure can be studied 

➢ Denoted by three integers (𝒉 𝒌 𝒍) 
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The crystal lattice may be regarded as made up of 

an aggregate of a set of parallel equidistant planes, 

passing through lattice points.  

It can be chosen in different ways as shown in the 

diagram. (2 dimensional).  

Miller devised a method to designate a set of parallel 

planes by three numbers called h, k and l called 

Miller indices.    

Procedure to determine miller indices of a crystal plane 

1. To determine the intercepts of a crystal plane along the three 

crystallographic directions (along the x, y, and z axes) 

2. To express the intercepts as multiples of unit cell dimensions, or lattice 

parameters along the axes 

3. To take the reciprocal of the intercepts 

4. To reduce these numbers to smallest set of integral numbers by taking 

least common multiplier (LCM) of these and multiplying with the 

reciprocal values 

5. The set of three integers are called miller indices denoted by (h, k, l) values  

Example 

Consider the diagram shown. 

(1) The coordinates of the intercepts made by the 

planes along the crystallographic axes (x, y, z)is 

given by  

 

 

where 𝑝 = 2,     𝑞 = 3,      𝑟 = 1 

(2) To express the intercepts as multiples of unit cell dimensions, or lattice 

parameters along the axes,  

 

 

(3) To determine the reciprocals of these numbers, 
1

2
        

1

3
       

1

1
 . 

𝑥           𝑦          𝑧 

2𝑎        3𝑏           𝑐 

𝑝𝑎          𝑞𝑏      𝑟𝑐 

2𝑎

𝑎
        

3𝑏

𝑏
        

𝑐

𝑐
 

2          3          1 
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(4) To reduce these numbers to smallest set of integral numbers by taking least 

common multiplier of these and multiplying with LCM, 

6 ×
1

2
       6 ×

1

3
      6 ×

1

1
 . This results in (3  2  6) 

In general these are denoted by (ℎ  𝑘  𝑙) called Miller indices. It is also 

observed that 
1

𝑝
∶

1

𝑞
∶  

1

𝑟
= ℎ ∶ 𝑘 ∶ 𝑙 . 

Important features of Miller indices of crystal planes : 

(1)  All parallel equidistant planes have the same Miller indices. Thus miller 

indices define a set of parallel planes. 

(2) A plane parallel to one of the coordinate axis has an intercept of infinity. 

(3) If the Miller indices of two planes have the same ratio, i.e. (8, 4, 4) and (4, 2, 

2) or (2, 1, 1) then the planes are parallel to each other.  

(4) If (ℎ, 𝑘, 𝑙) are the Miller indices of a plane, then the planes cuts the axes into 

h, k and l equal segments respectively.  

Important planes and directions in a 

cubic crystal 

In the diagram (a), the plane cuts the Y 

axis at a, X axis at ∞ and Z axis at infinity. 

Thus the intercepts are (∞, 1, ∞). 

The reciprocals are 
1

∞
  

1

1
  

1

∞
    𝑜𝑟  (0  1  0) . 

These are the Miller indices. Similarly the 

Miller indices for the planes in the 

diagram (b) and (c) are  (1  1  0)   and 

(1  1  1) respectively 

Separation between lattice planes in a cubic crystal. 

Consider a cubic crystal of side a as shown. Let (ℎ 𝑘 𝑙) represent the Miller 

indices of the plane ABC. Let 𝑂𝑁 =  𝑑 be the distance of the plane ABC from the 

origin as shown in diagram (a).  which is the interplanar spacing assuming a plane 

parallel to ABC at O.  

Let 𝛼′, 𝛽′ 𝑎𝑛𝑑 𝛾′ be the angles by the three axes with the line ON respectively as 

shown in diagram (b). These are not interfacial angles of the unit cell.  
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The intercepts of the plane on the 

three axes are 

 𝑂𝐴 =  
𝑎

ℎ
 , 𝑂𝐵 =  

𝑎

𝐾
 𝑎𝑛𝑑 𝑂𝐶 =  

𝑎

𝐿
 ….(1) 

From the diagram (b) we have 𝑐𝑜𝑠 𝛼′ =

 
𝑑1

𝑂𝐴
 , 𝑐𝑜𝑠 𝛽′ =

𝑑1

𝑂𝐵
      𝑎𝑛𝑑    𝑐𝑜𝑠 𝛾′ =  

𝑑1

𝑂𝐶
    

…(2) 

From diagram (c) 

 (𝑂𝑁)2 =  𝑥2 +  𝑦2 +  𝑧2      ….(3) 

𝑑2 =  [𝑑2𝑐𝑜𝑠2 𝛼′ +  𝑑2𝑐𝑜𝑠2𝛽′ + 𝑑2𝑐𝑜𝑠2𝛾′] 

𝑐𝑜𝑠2 𝛼′ +   𝑐𝑜𝑠2𝛽′ +   𝑐𝑜𝑠2𝛾′ = 1      ….(4) 

Substituting corresponding cosine terms from (2) in (4), we get 

[
𝑑

𝑂𝐴
]

2

+  [
𝑑

𝑂𝐵
]

2

+  [
𝑑

𝑂𝐶
]

2

= 1 …..(5) 

Substituting for OA, OB and OC from (1) in (5) 

[
𝑑 ℎ

𝑎
]

2

+  [
𝑑 𝑘

𝑎
]

2

+  [
𝑑 𝑙

𝑎
]

2

= 1       or      
𝑑2

𝑎2
(ℎ2 +  𝑘2 +  𝑙2) = 1 

the interplanar spacing is          𝒅 =  
𝒂

√𝒉𝟐+ 𝒌𝟐+ 𝒍𝟐
    ….(6)   

 

Relation between the cell constant and density of the material in cubic 

crystal 

Consider a cubic crystal of cell constant 𝑎. Let the number of atoms per unit cell 

be 𝑛 and the density of the material be 𝜌. The atomic weight of the material is 

𝑀𝐴 and the Avogadro number is 𝑁𝐴. 

Then (
𝑀𝐴

𝜌
) m3 volume of the material will contain 𝑁𝐴 atoms. Hence 𝑛 atoms per 

unit cell will occupy a volume given by 𝑉 =  
𝑀𝐴𝑛

𝜌 𝑁𝐴
. 

As the volume of a cubic crystal is 𝑉 =  𝑎3. Thus 𝑎3 =  
𝑀𝐴𝑛

𝜌 𝑁𝐴
 

Or the cell constant is   𝒂 =  [
𝑴𝑨𝒏

𝝆 𝑵𝑨
]

𝟏

𝟑
 . 
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X – Rays : X – rays are electromagnetic radiation of shorter wavelengths of the 

order of 0.001 to 10 nm. X-rays are produced when rapidly moving electrons 

that have been accelerated through a potential difference of order 1 kV to 1 MV 

strikes a metal target. 

X-rays were discovered in 1895 by Wilhelm Röntgen. He was interested in the 

cathode rays (beams of electrons) developed in discharge tubes. By chance he 

noticed that a fluorescent screen (ZnS + Mn
++

) lying on a table some distance 

from the discharge tube emitted a flash of light each time an electrical discharge 

was passed through the tube. Realizing that he had come upon something 

completely new, he devoted his energies to investigating the properties of the 

unknown ray “X” which produced this effect.  

 

Production of X – Rays 

 

The Coolidge tube - The X-ray tube consists of a 

glass envelope containing a high vacuum of the 

order of 10-5 mm of mercury. A cathode or negative 

electrode having a tungsten filament (F), which 

when heated emits electrons in a process called 

'thermionic emission'. The cathode also has a 

focussing cup (G) to direct the emitted electrons across the vacuum to hit the 

target. The anode or positive electrode is a thick copper rod with a small 

tungsten target (T) at the end. Tungsten is required as it has a high atomic 

number and a high melting point to improve the efficiency of bremsstrahlung X-

ray production. A cooling system with water circulating around the anode is 

provided to conduct enormous heat generated away from the tube effectively.  

 

Working - A potential difference (around 50, 000V) is applied between the 

cathode and anode. The tungsten filament is heated by an independent battery 

and the thermionically emitted electrons are accelerated across the potential 

difference to a high velocity before striking the tungsten target. When the 

electrons are suddenly decelerated on impact, some of the kinetic energy is 

converted into EM energy, as X-rays. Less than 1 % of the energy supplied is 

converted into X-radiation during this process. The rest is converted into the 

internal energy of the target which is taken out using cooling system. 

 

1.  The intensity of X – rays depends on the number of electrons striking the 

target per second. The number of electrons given out by the filament is 

proportional to the temperature of the filament which is controlled by the 

current in the filament circuit. 

2. The frequency of X – rays depend on the potential difference between the 

cathode and the anode. If V is the pd and e the charge on the electron, the work 
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done on the electron in moving from cathode to the anode = eV. The electrons 

that acquire kinetic energy is converted to X – rays when they strike the target. 

If max is the maximum frequency of X – rays produced, then 

hmax = eV.  

If min is the minimum wavelength of X – rays produced, then min = 
𝒄

𝝂𝒎𝒂𝒙
=  

𝒉𝒄

𝒆𝑽
  . 

 

Properties of X – rays 

1. X-rays travel in straight lines and cannot be deflected by electric field or 

magnetic field. 

2.  They have a high penetrating power. 

3. They effect photographic plates. 

4. Fluorescent materials glow when X-rays are directed at them. 

5. Photoelectric emission can be produced by X-rays. Ionization of a gas results 

when an X-rays pass through the gas. 

6. They can be absorbed by tissues and reflected or scattered by bones in the 

human body. 

7. X-rays can cause chemical and biologic damage to living tissue. 

 

X – ray spectra 

It was first studied by Urey and his coworkers.  

X – Ray spectra is the variation of Intensity of 

X – ray beam emitted by an X – ray tube with 

wavelength for different applied potential 

difference for a given substance.  

 

The X – ray spectra consists of two types (1) 

Continuous spectra and (2) Characteristic X – 

ray spectra. 

 

Continuous X – ray spectrum  

1.  For a given applied voltage, the intensity of X – rays 

varies smoothly with wavelength. The intensity reaches 

a maximum value as the wavelength increases, then 

the intensity falls at greater wavelengths. 

2.  When the applied potential is increased, the intensity 

of X – rays also increases. The minimum wavelength 

which depends on the tube voltage decreases with 

increase in voltage. 

3 Duane and Hunt showed that the min is inversely proportional to the applied 

voltage V or max is directly proportional to the applied voltage V. The graph 

shows this variation. This is mathematically indicated by the relation  

    min = 
𝒄

𝝂𝒎𝒂𝒙
=  

𝒉𝒄

𝒆𝑽
 , ie. 𝜆𝑚𝑖𝑛  ∝  

1

𝑉
        or    hmax = e V    ie. 𝜈𝑚𝑎𝑥  ∝  𝑉.  
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4. Most of the electrons that generate X – ray photons 

give up only a part of their energy in this way. Thus 

most of the X – rays are of wavelength longer than 

min . 

5. Thus a continuous spectrum is the result of the 

inverse photoelectric effect, with electron kinetic 

energy (eV) being transformed into X –ray photon 

energy (h𝜈).  

6. Fast moving electrons are decelerated by the atoms of 

the target due to electrostatic forces and collisions emitting X – ray photons.    

 

Note “Bremsstrahlung” means "braking radiation" and is retained from the original 

German to describe the radiation which is emitted when electrons are decelerated or 

"braked" when they are fired at a metal target. Accelerated charges give off 

electromagnetic radiation, and when the energy of the bombarding electrons is high 

enough, that radiation is in the x-ray region of the electromagnetic spectrum. It is 

characterized by a continuous distribution of radiation which becomes more intense 

and shifts toward higher frequencies when the energy of the bombarding electrons is 

increased. 

 

Characteristic X – ray spectrum 

1. It is the spectrum that indicates sharp lines at a specific 

applied voltage against the continuous X – ray spectra 

background which is the characteristic of the 

substance responsible for the spectrum.  

2. The peaks seen in the diagram at specific wavelengths  

indicating the line spectrum which is the characteristic 

of the element used in the target of the Coolidge tube.  

3. These peaks occur at different applied voltages for different elements.   

 

Origin of characteristic X – ray spectrum   

1. The bombarding electrons on the target can eject electrons from the inner 

shells of the atoms of the metal target.  

2. Those vacancies will be quickly filled by electrons dropping down from 

higher levels, emitting x-rays with sharply defined frequencies associated 

with the difference between the atomic energy levels of the target atoms.  

3. Thus characteristic x-rays are emitted from heavy elements when their 

electrons make transitions between the lower atomic energy levels (ie. 

between K, L, M.. shells). 

4. The characteristic x-rays emission which shows as two sharp peaks occur 

when vacancies are produced in the n=1 or K-shell of the atom and 

electrons drop down from above to fill the gap. 

5. The x-rays produced by transitions from the n=2 to n=1 levels are called 

𝐾𝛼 x-rays, and those for the n=3to n = 1 transiton are called 𝐾𝛽 x-rays. 

http://hyperphysics.phy-astr.gsu.edu/hbase/ems3.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/ems1.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/ems3.html#c4
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6. Transitions to the n=2 or L-shell are designated as L x-rays (n=3 to n = 2 

is 𝐿𝛼, n=4 to n = 2 is 𝐿𝛽, etc. ).  

7. The frequencies of the characteristic x-rays can be predicted from the 

Bohr model. 

8. Moseley measured the frequencies of the characteristic x-rays from a large 

number of the elements of the periodic table and a plot of them which is 

now called a "Moseley plot" was drawn.   

9. Characteristic x-rays are used for the investigation of crystal structure by 

x-ray diffraction. 

10. Crystal lattice dimensions may be determined with the use of Bragg's 

law in a Bragg spectrometer 

. 

Moseley’s law : Moseley had done experiments on the characteristic X-rays 

and this led to the development of the concept of atomic number.  

1. The periodic table was made according to the atomic weight in earlier 

days. But some anomalies were found in such an arrangement.  

2. Moseley measured the frequencies of characteristic X-rays from large 

number of elements for a particular line (like 𝐾𝛼 line) and he studied the 

relationship between frequency and the atomic number of the element in 

the periodic table.  

3. A graph between square root of frequency Vs 

atomic number Z in the periodic table is 

found to be a linear graph. 

4. This suggested that, elements are to be 

arranged based on atomic number and not 

on atomic weight. Hence, Moseley re-

arranged the periodic table based on atomic 

number.  

5. Statement of Moseley’s law – The frequency of a spectral line in the X – 

ray spectrum, varies as the square of the atomic number of the element 

emitting it. 𝝂 ∝  𝒁𝟐
 . He expressed his observations mathematically as 

√𝝂 = 𝒂(𝒁 − 𝒃)where a and b are the constants depending on the particular 

line,  is the frequency and Z is the atomic number. 

 

 

 

 

 

 

 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/moseley.html
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html#c2
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Explanation of Moseley’s law according to Bohr’s theory 

Bohr’s theory of hydrogen spectrum gives the 

frequency of a spectral line as 𝜈 =  𝑍2𝑅𝑐 (
1

𝑛1
2 −  

1

𝑛2
2) 

where R is the Rydberg constant and c is the 

speed of light. For K line n1 = 1 and n2 – 2 for 

the electron making transition from second to 

first orbit. Thus  𝜈 =  𝑍2𝑅𝑐 (
1

12 −  
1

22
) =  

3

4
 𝑐𝑅𝑍2. 

This shows  𝜈 ∝  𝑍2  which approximately corresponds to Moseley’s law. 

 

Distinction between Continuous and characteristic X ray spectra 

SL. 
No. 

Continuous spectra Characteristic spectra 

1 
They consist of all possible of 

wavelengths 

They consist of specific wavelengths 
superimposed on the continuous 

spectra.  

2 
The intensity increases with 
increase in applied voltage 

They occur at specific applied voltages 
which depends on the nature of the 

material  

3 
They are produced due to 

bremsstrahlung  

They are produced by inner shell (usually 

K shell) transitions. 

4 

When a metal target is 

bombarded with electrons, 
some electrons are scattered 
by the atoms, whose 

acceleration causes them to 
radiate. This mechanism is 

called bremsstrahlung. 

Some electrons kick the inner shell 

electrons out of the target atom. These 
atoms which have one electron less in 
their inner shell will then rearrange its 

electronic configuration to fill the inner 
shell vacancy, emitting characteristic x 

rays. 

5 

Continuous spectrum 

depends very little on the 
metal used as target. The 
height of the curve increases 

with the increase of the Z of 
the metal, but the shape of 

the curve is independent of Z 

It is the line spectrum that depends 
mainly on the material from which the X 
–rays originates, either the anticathode of 

the X – ray tube or absorbing material 
used in a fluorescence experiment.  

6 

The maximum frequency  
νmax  of the emitted X rays 
completely independent of 

metal used for the 
anticathode or the target 

The frequencies of the spectral lines are 
independent of the voltage which 

accelerates the electrons and 
independent of the frequency of the 

incident radiation. Depends only on the 
chemical elements of which the material 
is composed.  
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Compton effect 
1. The change in the wavelength of scattered X – 

rays after incident on a material due loss of 

energy of incident X – rays is called Compton 

effect.  

2. Compton discovered that when X – rays of 

sharply defined wavelength were incident on a 

material of low atomic number like carbon, 

they suffered a change of wavelength on 

scattering. 

3. The scattered X rays observed by a detector at 

different angles. 

4. The scattered X – rays have two wavelengths one same as incident ray and 

the other of longer wavelength at angles other than 00 i.e. direct rays as 

shown. 

5. This effect was explained by Compton on the basis of quantum theory of 

radiation. The whole process is treated as collision between a X – ray 

photon and an electron of the scatterer in which both momentum and 

energy are conserved. 

 

Expression for Compton shift    

Consider an X – ray photon of energy h and momentum h/c striking an 

electron at rest.  

The scattered photon of energy h’ and momentum h’/c moves in a direction 

making an angle  to the original direction.  

The electron acquires a momentum mv and moves 

an angle  to the original direction.  

The initial energy of electron is 𝑚0𝑐2  and initial 

momentum is zero. Final energy due to recoil is mc2. 

Considering the x and y components of momentum 

and applying the principle of conservation of 

momentum we get 
ℎ𝜈

𝑐
=  

ℎ𝜈′

𝑐
cos 𝜃 + 𝑚𝑣 cos 𝜙   ………(1)    (along X axis) 

0 =  
ℎ𝜈′

𝑐
sin 𝜃 − 𝑚𝑣 sin 𝜙      ……….(2)   (along Y – axis) 

From equation (1) 𝑚𝑣𝑐 cos 𝜙 = ℎ(𝜈 − 𝜈′ cos 𝜃)        …..(3) 

From equation (2)   𝑚𝑣𝑐 sin 𝜙 = ℎ𝜈′ sin 𝜃         ………(4) 

Squaring and adding equations (3) and (4)  

𝑚2𝑣2𝑐2 =  ℎ2(𝜈2 − 2𝜈𝜈′ cos 𝜃 + 𝜈′2
𝑐𝑜𝑠2 𝜃) + ℎ2𝜈′2

𝑠𝑖𝑛2 𝜃  

𝑚2𝑣2𝑐2 =  ℎ2(𝜈2 − 2𝜈𝜈′ cos 𝜃) + ℎ2𝜈′2
  

𝑚2𝑣2𝑐2 =  ℎ2(𝜈2 − 2𝜈𝜈′ cos 𝜃 + 𝜈′2
)         … … . . (5)  

According to the principle of conservation of energy 
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ℎ𝜈 + 𝑚0𝑐2 = ℎ𝜈′ + 𝑚𝑐2       ………(6) 

or𝑚𝑐2 =  ℎ(𝜈 − 𝜈′) + 𝑚0𝑐2 

squaring the above equation 𝑚2𝑐4 = (ℎ(𝜈 −  𝜈′) + 𝑚0𝑐2)2 

or𝑚2𝑐4 = ℎ2(𝜈2 − 2𝜈𝜈′ + 𝜈′2
) + 2ℎ(𝜈 −  𝜈′) 𝑚0𝑐2 +  𝑚0

2𝑐4      ……..(7) 

subtracting equation (5) from (7)  

𝑚2𝑐2(𝑐2 −  𝑣2) = −2ℎ2𝜈𝜈′(1 − cos 𝜃) + 2ℎ(𝜈 − 𝜈′) 𝑚0𝑐2 + 𝑚0
2𝑐4 ……(8) 

The value of 𝑚2𝑐2(𝑐2 −  𝑣2) is obtained from the relativistic formula  𝑚 =
𝑚0

√1− 
𝑣2

𝑐2

 ,  

squaring this equation 𝑚2 =  
𝑚0

2

1− 
𝑣2

𝑐2

 =  
𝑚0

2𝑐2

𝑐2− 𝑣2  . Multiplying both sides by  𝑐2 

we get 𝑚2𝑐2 =  
𝑚0

2𝑐4

𝑐2− 𝑣2     or  𝑚2𝑐2(𝑐2 − 𝑣2) = 𝑚0
2𝑐4    ………(9) 

comparing equations (8) and (9) 

𝑚0
2𝑐4 = −2ℎ2𝜈𝜈′(1 − cos 𝜃) + 2ℎ(𝜈 −  𝜈′) 𝑚0𝑐2 + 𝑚0

2𝑐4 

Simplifying 2ℎ(𝜈 −  𝜈′) 𝑚0𝑐2 =  2ℎ2𝜈𝜈′(1 − cos 𝜃) 

Or  
𝜈− 𝜈′

𝜈𝜈′ =  
ℎ

 𝑚0𝑐2
(1 − cos 𝜃)   or     

1

𝜈′ −  
1

𝜈
=  

ℎ

 𝑚0𝑐2
(1 − cos 𝜃) 

Multiplying both sides by c
𝑐

𝜈′ −  
𝑐

𝜈
=  

ℎ

 𝑚0𝑐
(1 − cos 𝜃)  

Or  𝝀′ −  𝝀 =  
𝒉

 𝒎𝟎𝒄
(𝟏 − 𝐜𝐨𝐬 𝜽)       ……….(10) 

The change in wavelength is  𝒅𝝀 =  
𝒉

 𝒎𝟎𝒄
(𝟏 − 𝐜𝐨𝐬 𝜽) called the Compton 

shift 

The change in wavelength is independent of the wavelength of the incident 

radiation as well as the nature of the scattering material. d depends on the 

angle of scattering only. 

Case 1 : When  = 0, cos  = 1 and hence d = 0. 

Case 2 : When  = 900, cos  = 0 and 

Hence     𝑑𝜆 =  
ℎ

 𝑚0𝑐
=  

6.625 × 10−34

9.11 × 10−31 ×3 ×108  =  0.0243 × 10−10𝑚 = 0.0243 𝐴0 

This is called the Compton wavelength.  

Case 3 : When  = 1800, cos  = - 1 and hence 𝑑𝜆 =  
2ℎ

 𝑚0 𝑐
= 0.0485 𝐴0. Thus d 

has the maximum value at  = 1800.  

 

X – Ray diffraction  

➢ X – rays are electromagnetic rays like light and thus exhibit interference 

and diffraction. The wavelength of X rays are of the order 0.1nm.  

➢ The diffraction grating produce diffraction of light as the condition to 

produce diffraction is, the wavelength of light (500 nm) is comparable to 

the size of the obstacle or the slit. Thus grating cannot produce X- ray 

diffraction. 

➢ In 1912 Laue suggested that a crystal which consisted of a three 

dimensional array of regularly spaced atoms could serve the purpose of a 
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grating. Thus crystal acts as a space grating for X rays to undergo 

diffraction. Here the interplanar spacing is of the order of wavelength of X 

rays.  

➢ The diffraction pattern consists of a bright central spot and a series of 

spots arranged in a regular pattern around the central spot. 

➢ According to Bragg, the spots are produced due to the reflection of  

incident X rays from various sets of parallel crystal planes (called Bragg 

planes)  with each plane having a large number of lattices points of equal 

spacing. 

 

Bragg’s law :  

Consider a X ray PA reflected at atom A from 

plane I in the direction AR and another ray 

QB reflected at another atom B from plane II 

in the direction BS. 

Now from the atom A two perpendiculars AC 

and AD are drawn to QB and BS respectively. 

The two reflected rays will be in phase or out 

of phase depending on the path difference.  

When the path difference (CB + BD) is a whole wavelength (𝜆) or multiples of 

whole wavelength (𝑛𝜆) , then the two rays will superpose constructively to 

produce a intense spot.  

Thus the condition for this reinforcement or superposition is 

 𝐶𝐵  + 𝐵𝐷 = 𝑛𝜆     …..(1) 

In the diagram, from the right angle triangles, ACB and ADB,  

𝐶𝐵 = 𝑑 𝑠𝑖𝑛𝜃  and  𝐷𝐵 = 𝑑 𝑠𝑖𝑛𝜃   …..(2)  

where d is the interplanar spacing and 𝜃 is the angle between the incident ray 

and the plane of reflection called glancing angle.  

Substituting (2) in (1)    𝑑 𝑠𝑖𝑛𝜃 +  𝑑 𝑠𝑖𝑛𝜃  = 𝑛𝜆     

Thus the condition for reinforcement is 𝟐𝒅 𝒔𝒊𝒏𝜽 = 𝒏𝝀   where n is the integer 

taking values 1, 2, 3, …. which correspond to first order, second order, third 

order…. Maxima respectively.  

The above equation is called the Bragg’s law.  

For first maximum 𝑠𝑖𝑛𝜃1 =
𝜆

2𝑑
 ,  for second maximum, 𝑠𝑖𝑛𝜃2 =

2𝜆

2𝑑
 and for third 

maximum 𝑠𝑖𝑛𝜃3 =
3𝜆

2𝑑
   etc….  The intensity of the maxima decreases as the order 

of spectrum increases.  
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PART A 

1  Distinguish between crystalline and amorphous states of matter and hence define 

lattice, basis, crystal structure, unit cell and cell parameters. 

2  What are Bravais lattice? Mention all the Bravais lattices along with the crystal 

system they belong to and the corresponding cell parameters. 

3   (a) What are symmetry elements in crystallography? Explain the various point group 

operations. 

     (b) What is coordination number? Explain. 

4  (a) What are Miller indices? Explain the procedure of finding these Miller indices with 

an example. 

     (b) Arrive at the interplanar spacing between lattice planes of a cubic crystal.  

5  (a) State and explain Moseley’s law. Mention any two importance of Moseley’s law. 

    (b) Distinguish between continuous and characteristic X ray spectra. 

6  What is Compton effect? Derive an expression for the Compton shift. 

7  (a) What are X rays? Mention the characteristics of X rays. 

    (b) Explain continuous and characteristic X ray spectra. 

8  (a) Arrive at the relation between the cell constant and density of the material in a 

cubic crystal 

    (b) With a neat diagram explain the Bragg’s law of X ray diffraction. 

 

PART B 

1.   In a crystal, a plane cuts intercepts of 3a, 2b and 6c along the three crystal axes. 

Determine the Miller indices of the plane. 

      Hint : Take the intercepts and then reciprocal and multiply by LCM (hkl) = (231) 

2   Find the Miller indices of  a plane which is parallel to y axis and intercepts 2 and 

1/3 along x and z axes respectively.  

     Hint : Intercept along y axis is infinity. (hkl) = (1,0,6) 

3   Find the inter planar spacing for the lattice planes of Miller indices (3 2 1)  (2 1 0) 

and (1 1 1) for the cubic lattice with a = 5.62A0. 

      Hint :  𝑑 =  
𝑎

√ℎ2+ 𝑘2+ 𝑙2
 . 

4.  Compute the Miller Indices for a plane intersecting at x= ¼ , y=1, and x=1/2, 

Answer: (4,1,2) 

5.  Calculate the miller indices for the plane with intercepts 2a, - 3b and 4c the 

along the crystallographic axes. 

     Answer  (6, 4̅, 3) 

6.  The lattice constant for a unit cell of aluminum is 4.031Å Calculate the 

interplanar space of (2 1 1) plane. Answer: d = 1.6456 Å 

7    Calculate the minimum voltage that should be applied to the X ray tube to produce 

photons of wavelength 0.1A0. 

      Hint : 𝑉 =  
ℎ𝑐

𝜆𝑒
 

8   Monochromatic X rays of wavelength 0.15A0 undergoes Compton effect from a carbon 

block. Calculate the wavelength scattered through i) 450, (ii) 1350 and (iii) 1800    

     Hint : 𝑑𝜆 =  
ℎ

 𝑚0𝑐
(1 − cos 𝜃)    𝑎𝑛𝑑   𝜆 −  𝜆′ = 𝑑𝜆,  find 𝜆 

9   The anode voltage in an X ray tube is 80kV and the wavelength of the X ray produced 

is 0.15A0. Find the planck’s constant. 
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     Hint : 𝑉 =  
ℎ𝑐

𝜆𝑒
 

10  Find the smallest glancing angle at which 𝐾𝛼 line of Molybdenum of wavelength 0.5 

A0 will be reflected from calcite crystal of spacing 3A0. At what angle will the third 

order reflection occur?  

      Hint : 𝑠𝑖𝑛𝜃1 =
𝜆

2𝑑
, 𝑓𝑖𝑛𝑑 𝜃1    𝑎𝑛𝑑  𝑠𝑖𝑛𝜃3 =

3𝜆

2𝑑
,    𝑓𝑖𝑛𝑑 𝜃3 

11   Calculate the glancing angle on the plane (1 1 0) of a cube rock salt ( a = 2.81A0) 

corresponding to second order diffraction maximum for the X rays of wavelength 

0.71 A0. 

    Hint : 𝑑 =  
𝑎

√ℎ2+ 𝑘2+ 𝑙2
    𝑎𝑛𝑑   𝑠𝑖𝑛𝜃2 =

2𝜆

2𝑑
 ,   𝑓𝑖𝑛𝑑 𝜃2 . 

12  X rays of wavelength of 1.54 A0 are used to calculate the spacing of (200) plane in 

platinum. The Bragg angle for this reflection is 22.40. What is the size of unit cell of 

the platinum crystal? 

     Hint : 𝑑 =  
𝑎

√ℎ2+ 𝑘2+ 𝑙2
=  

𝑎

2
 ,   (ℎ𝑘𝑙) = (200)   𝑎𝑛𝑑  2𝑑 𝑠𝑖𝑛𝜃 = 𝑛𝜆  𝑤ℎ𝑒𝑟𝑒 𝑛 = 1, 𝑓𝑖𝑛𝑑 𝑎  

13  The wavelength of prominent X ray line from a copper target is 1.54A0. This radiation 

when diffracted from (111) plane of a crystal with fcc structure, correspond to Bragg 

angle of 19.20. If the density of the crystal is 2698 kgm-3, and atomic weight 26.98kg 

k mol-1, Calculate the Avogadro number. 

    Hint :   𝑑 =  
𝑛𝜆

𝑠𝑖𝑛𝜃
 ,   𝑛 = 1,   𝑓𝑖𝑛𝑑 𝑑,     𝑑 =  

𝑎

√ℎ2+ 𝑘2+ 𝑙2
    𝑓𝑖𝑛𝑑 𝑎,    

     𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑜𝑚𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙  𝑓𝑜𝑟 𝑓𝑐𝑐 = 𝑛 = 4    𝑎𝑛𝑑  𝑁𝐴 =  
𝑀𝐴𝑛

𝜌𝑎3 
   

14  X rays of wavelength 0.3A0  undergoes 600 compton scattering. Find the wavelength 

of the photon after scattering. 

      Hint : 𝜆 −  𝜆′ =
ℎ

 𝑚0𝑐
(1 − cos 𝜃)  

15  Find the perpendicular distance between the two planes indicated by the 

Miller indices (1 2 1) and (2 1 2) in a unit cell of a cubic lattice with a lattice 

constant parameter ‘a’.    Answer : d = d1 – d2 = 0.0749 a 

16. What is the distance between the adjacent Miller planes if the first order    

reflection from X-rays of wavelength 2.29 A occurs at 2708' ?  Ans 2.51 A 

17. X-rays of wavelength λ=1.5Å are reflected from the (2 2 2) planes of a cubic 

crystal with unit cell a = 5Å. Calculate the Bragg angle, θ, for n=1. 

18. X – rays of wavelength 0.71 A0 are incident on a sodium chloride crystal. 

Calculate the first order reflection angle from the (100), (110) and (111) 

planes. The d spacing for (100) plane is 2.84 A0. 

19. In Compton effect, the wavelength of the X -rays scattered at an angle of 450 

is 0.022 A0. Calculate the wavelength of X – rays. 

20. The molecular weight of NaCl is 58.448 and its density 2.165 g cm-3.  What 

is the edge length of a cube that contains one mole of NaCl ?    
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Free electron theory of metals 

Properties of Metals 

1. Metals have high electrical and high thermal conductivities. 

2. In steady state Ohm’s law is obeyed. ( 𝐽 ∝ 𝐸    𝑜𝑟   𝐼 ∝ 𝑉) 

3. Electrical resistivity above Debye temperature (it is the temperature of a 

crystal’s normal mode of vibration i.e. highest temperature that can be 

achieved due to a single normal vibration) is directly proportional to the 

absolute temperature. (𝜌 ∝ 𝑇) 

4. At very low temperatures, the resistivity of the metal is directly 

proportional to the fifth power of absolute temperature.(𝜌 ∝ 𝑇5) 

5. For most metals resistivity is inversely proportional to the pressure(𝜌 ∝
1

𝑃
) 

6. Wiedemann – Franz’s law is obeyed. (
𝐾

𝜎
 ∝ 𝑇) where K is thermal 

conductivity and  is electrical conductivity. 

7. At absolute zero temperature, the value of resistivity tends to zero – 

Superconductivity. 

 

Classical theory of metals – Drude and Lorentz free electron theory of 

metals  

Postulates : 

1. Metals are composed of positive metal ions with the valence electrons  

moving freely among the positive ions. 

2. The electrons are in random motion. They are confined to remain within 

the boundaries of the metal. They can move from one place to another 

within the metal without loss of energy and occasionally collide with the 

positive ions.   

3. The free electrons are bound to the positive metal ions by the electrostatic 

force of attraction.  

4. The random motion of electrons within the metal can be imagined to be 

similar to molecules in a gas. (Electron gas) Thus classical kinetic theory 

of gases can be applied to the electrons. 

5. Classical Maxwell – Boltzmann distribution law is applied to electron gas. 

 

Expression for the Electrical conductivity – Ohm’s law 

Consider a large number of free electrons each of charge e, moving in random 

motion in a metal and constantly colliding with the other electrons. 

If the average time taken by electrons between two successive collisions called 

relaxation time be  and the random velocity of the electrons along any one 

direction be u, then 𝜏 =  
𝜆

𝑢
  ………..(1) 

Where  is the mean free path which is the average distance travelled by the 

electrons between any two successive collisions. 
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If an electric field E is applied to such a metal, the force F exerted on an electron 

is    F = - eE     where F = ma and a is the acceleration of the electron  𝑎 =
𝑑2𝑥

𝑑𝑡2
  . 

Thus   𝑚 
𝑑2𝑥

𝑑𝑡2
=  −𝑒 𝐸  or   

𝑑2𝑥

𝑑𝑡2
=  −

𝑒

𝑚
 𝐸 

Integrating the above equation  ∫
𝑑2𝑥

𝑑𝑡2
𝑑𝑡 =  − ∫

𝑒

𝑚
 𝐸 𝑑𝑡 . Thus  

𝑑𝑥

𝑑𝑡
=  𝑥̇ = − 

𝑒 𝐸

𝑚
 𝑡 + 𝐶 

At t = 0, 𝑥̇ = 0   C = 0.  Thus  𝑥̇ = − 
𝑒 𝐸

𝑚
 𝑡  ……..(2) 

The average velocity of electrons between two successive collisions is found by 

integrating eqn. (2) 

𝑥̅̇ =  
1

𝜏
∫ − 

𝑒 𝐸

𝑚
 𝑡

𝜏

0
 𝑑𝑡   =  − 

1

𝜏
(

𝑒 𝐸

𝑚

𝜏2

2
) 

Thus 𝑥̅̇ = − 
𝑒 𝐸 𝜏

2 𝑚
 . The average velocity of electrons is called drift velocity vd.    

Thus the drift velocity is given by 𝒗𝒅 = − 
𝒆 𝑬 𝝉

𝟐 𝒎
      …..(3) 

From the above expression, relaxation time is given by  𝝉 =  
𝟐 𝒎 𝒗𝒅

𝒆 𝑬
.     …..(4) 

If the current through the metal of area of cross section A is 𝐼 and n is the 

number of electrons per unit volume , then     𝐼 =  −𝑛𝑒𝐴𝒗𝒅 

If J is the current density which is the current per unit area, then  

J = - n e 𝒗𝒅 =  − 𝑛 𝑒 (− 
𝑒 𝐸 𝜏

2 𝑚
) =  

𝑛 𝑒2𝐸 𝜏

2 𝑚
.  Thus      𝐽 =

𝑛 𝑒2𝐸 𝜏

2 𝑚
    …….(5) 

Substituting for 𝜏 from eqn. (1) in the above equation, we get  𝐽 =  
𝑛 𝑒2𝐸

2 𝑚

𝜆

𝑢
 

Multiplying and dividing the above equation by u we get 𝐽 =  
𝑛 𝑒2𝐸 𝜆 𝑢

2 𝑚𝑢2  

From the kinetic theory 
1

2
 𝑚 𝑢2 =  

3

2
 𝑘 𝑇    or  𝑚 𝑢2 =  3 𝑘 𝑇    where k is the 

Boltzmann constant 

Thus   𝐽 =  
𝑛 𝑒2𝐸 𝜆 𝑢

2 (3 𝑘 𝑇)
=  

𝑛 𝑒2𝐸 𝜆 𝑢

6 𝑘 𝑇
       …..(6) 

The current density   𝐽 =  𝜎 𝐸    ……(7)  

Comparing (6) and (7)     𝑤ℎ𝑒𝑟𝑒  𝜎 𝐸 =
𝑛 𝑒2 𝐸 𝜆 𝑢

6 𝑘 𝑇
      or    𝜎 =

𝑛 𝑒2 𝜆 𝑢

6 𝑘 𝑇
    

The expression for the electrical conductivity is  𝝈 =
𝒏 𝒆𝟐 𝝀 𝒖

𝟔 𝒌 𝑻
 

 

Verification of Ohm’s law :  

If the metal is of length is l and area of cross section A, V is the applied potential,  

then 𝐸 =  
𝑉

𝑙
. (as the electric field is negative potential gradient) 

The current density  𝐽 =  
𝐼

𝐴
,   

Substituting for J and E from the above equations in the equation  

 𝐽 =  𝜎 𝐸   𝑤𝑒 𝑔𝑒𝑡  
𝐼

𝐴
=  𝜎 

𝑉

𝑙
    𝑜𝑟   𝑉 =  (

𝑙

𝜎 𝐴
)  𝐼  𝑤ℎ𝑒𝑟𝑒 

𝑙

𝜎 𝐴
= 𝑅 .  Thus V = R I  

where R is the resistance of the metal and 
1

𝜎
=  𝜌  called resistivity of the metal. 

This verifies Ohm’s law.  
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Expression for Thermal conductivity 

Consider a metal assumed to be made of a number of layers. 

Consider any three such layers as shown with layer E at 

temperature T1 and F at temperature T2. Consider 𝜆 as the 

mean free path which is the distance between the layers E and 

A and also A and F.  

If n is the number of electrons per unit volume, u is the  

average velocity of electrons, then the number of electrons crossing from layer E 

to F through A per unit area per unit time is 
1

6
 𝑛 𝑢 . (As the system is in three 

dimensions, the electrons can move in any of the three directions x, y and z. 

Thus 1/3rd of electrons move along each axis. Also half of 1/3rd moves in one 

direction and remaining in the opposite direction of that axis. Thus 1/6th is 

considered along a specific direction). 

 

If T1> T2, from the kinetic theory of gases, the heat energy transferred from E to 

F per unit area per unit time is  𝑄1 =  
1

6
  𝑛 𝑢 ×  

1

2
 𝑚 𝑢1

2      ………..(1)  

where, 
1

2
 𝑚 𝑢1

2 is the energy of each electron 

𝑄1  =  
1

6
  𝑛 𝑢 × 

3

2
 𝑘 𝑇1.      (Since  

1

2
 𝑚 𝑢1

2 =  
3

2
 𝑘𝑇1) 

𝑄1  =  
1

4
  𝑛 𝑢  𝑘 𝑇1   ………….(2) 

The energy transferred from F to E is 𝑄2  =  
1

4
  𝑛 𝑢  𝑘 𝑇2 

Hence the net heat energy transferred from E to F per unit area per unit time is 

Q = Q1 – Q2 

𝑄 =  
1

4
  𝑛 𝑢  𝑘 (𝑇1 −  𝑇2)…….(3) 

If K is the thermal conductivity of the metal, then the energy transfer per unit 

area per unit time by definition is 

𝑄 =  
𝐾  (𝑇1− 𝑇2)

2 𝜆
……(4)  (where 2 𝜆 is the distance between layers E and F) 

Comparing equations (3) and (4) we get     
1

4
  𝑛 𝑢  𝑘 (𝑇1 −  𝑇2) =  

𝐾  (𝑇1− 𝑇2)

2 𝜆
  

Or   𝑲 =  
𝟏

𝟐
 𝝀 𝒏 𝒖 𝒌   

 

Wiedemann – Franz kaw 

Statement : The ratio of thermal conductivity to that of the electrical 

conductivity of  a metal is directly proportional to the absolute temperature of 

the metal.  

The thermal conductivity   𝑲 =  
𝟏

𝟐
 𝝀 𝒏 𝒖 𝒌    ……(1) 

The electrical conductivity  𝝈 =
𝒏 𝒆𝟐 𝝀 𝒖

𝟔 𝒌 𝑻
       ……..(2) 

    E         A           F      

                    

 

              B 
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 Taking the ratio of the above equations we get 
𝐾

𝜎
= 3 (

𝑘

𝑒
)

2

 𝑇 

Or   
𝐾

𝜎 𝑇
= 𝐿   or  

𝐾

𝜎 
= 𝐿 𝑇     where  𝐿 =

3 𝐾2

𝑒2   is called the Lorentz number. 

Hence   
𝑲

𝝈
 ∝ 𝑻  which is the Wiedemann – Franz law. 

 

Merits of Classical Free Eletron Theory: 

1. It is used to verify Ohm's law. 

2. The electrical and thermal conductivities of metals can be explained. 

3. It is used to derive Wiedemann- Franz law 

4. It is used to explain the optical properties of metals. 

 

Drawbacks of Classical Free Electron Theory: 

1.  It is a macroscopic theory. 

2. It cannot explain the electrical conductivity of semiconductors and 

insulators properly. 

3. Dual nature is not explained. 

4. It cannot explain the Compton effect and Photo-electric effect. 

5. The theoretical and experimental values of specific heat do not agree with 

each other. 

6. Atomic fine spectra could not be accounted. 

7. Different types of magnetisms could not be explained satisfactorily by this 

theory. 

 

Quantum theory of metals 

Sommerfeld and Pauli applied quantum mechanics and modified the free 

electron theory. 

1   Instead of classical Maxwell – Boltzmann  distribution law that is applied to 

electrons in the classical theory, the distribution of energy in electron gas is 

said to obey Fermi – Dirac distribution law according to the quantum theory. 

2   The energy of electrons in a metal are quantized. The energy levels in the    

metal are filled with electrons on the basis of Pauli exclusion principle.  

3   According to this principle, an energy level can take only two electrons one 

with spin up and the other with spin down. Thus the electrons, depending 

on the energy values are filled from the lowest energy upwards. 

4   The energy of the highest occupied level at absolute zero temperature is called 

Fermi energy. 

 

Expression for density of states for free electrons 

Density of states is defined as the number of electronic states present in a unit 

energy range. It is represented by g(E). 
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𝑔(𝐸) =  
𝑑𝑁

𝑑𝐸
  

where dN is the number of electron quantum energy states present in the energy 

interval E and E + dE. 

The number of quantum states in the energy state dE can be determined using 

quantum mechanical analysis of particle in a box.  According to this analysis, 

the energy of an electron in the nth state is    𝐸 =  
𝑛2ℎ2

8 𝑚 𝐿2
 

Here n is an integer that takes values 1,2,3….  Also, n is treated like vectors 

representing the distance from the lowest energy line. Then one can use 

Pythagoras theorem to combine them into one single vector. ie. 𝑅 =  √𝑛𝑥
2 + 𝑛𝑦

2+ 𝑛𝑧
2 

Thus the energy is represented as    𝐸 =  
𝑅2ℎ2

8 𝑚 𝐿2
.  or    𝑅 = [

8 𝑚 𝐿2 𝐸

ℎ2
]

1

2
 .  

The number of states with energy En will just be the number of states inside the 

sphere of radius R.  

The n – space associated with particle in a box involves only positive values of 

n, so that volume must be divided by 8. It is then multiplied by 2 to account for 

two possible spin values of electron. 

Thus the number of quantum states  

𝑁 = 2 × 
1

8
 ×

4

3
 𝜋 𝑅3 =  

1

3
 𝜋 [

8 𝑚 𝐿2 𝐸

ℎ2 ]

3

2
=  

1

3
 𝜋[8 𝑚 𝐸 ]

3

2
𝐿3

ℎ3  

or 𝑁 =  
1

3
 𝜋 [2 √2 𝑚 𝐸]

3 𝐿3

ℎ3  =  
1

3
 𝜋

8 (2 𝑚 𝐸)3/2𝐿3

ℎ3  

𝑁 =  
8 𝜋

3

(2 𝑚)3/2𝑉 𝐸3/2

ℎ3    where V = L3 = volume 

Thus the density of states  𝑔(𝐸) =  
𝑑𝑁

𝑑𝐸
=  

𝑑

𝑑𝐸
(

8 𝜋

3

(2 𝑚)3/2𝑉 𝐸3/2

ℎ3 ) =  
8 𝜋

3

(2 𝑚)3/2𝑉 

ℎ3

3

2
√𝐸 

or 𝒈(𝑬) =  
𝟖 √𝟐 𝝅 𝑽 𝒎𝟑/𝟐

𝒉𝟑 √𝑬 

Thus the number of energy states per unit volume per unit energy E is 

 𝑔(𝐸) =  
8 √2 𝜋  𝑚3/2

ℎ3 √𝐸.    or 𝑔(𝐸)  ∝  √𝐸. 

 

Fermi – Dirac distribution function : Fermi energy (EF) 

Fermi energy is the maximum energy occupied by a free electron at absolute 

zero temperature.  

The electron gas in a metal obeys Fermi – dirac statistics (called fermions). In an 

assembly of fermions, if there are g(E) allowed quantum states in an energy 

range E and E + dE and n(E) is the number of particles, then n(E) states are filled 

and g(E) – n(E) are vacant. 

The Fermi dirac distribution function f(E) is defined as  

𝑓(𝐸) =  
𝑛(𝐸)

𝑔(𝐸)
=  

1

1+ 𝑒(𝐸− 𝐸𝐹)/𝑘𝑇
    ……..(1) 

It indicates the fraction of quantum states occupied or the probability that the 

level E is occupied by an electron. 
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f(E) = 1 for E < EF   ie. all quantum states are filled. 

f(E) = 0 for E > EF   ie. quantum states above EF are empty. This function is plotted 

as shown 

 

All levels below EF are completely filled and all levels above EF are empty at 

absolute temperature. As the temperature is increased, f(E) changes from 1 to 0 

more and more gradually. For E = EF,  f(E)  = ½ at all temperatures.  

 

Expression for Fermi energy 

The number of electrons between the energy E and E + dE is 

n(E) dE = g(E) dE f(E)    …….(1) 

where g(E) is the density of states given by 𝑔(𝐸) =  
8 √2 𝜋 𝑉 𝑚3/2

ℎ3 √𝐸  ….(2) 

and f(E) is the Fermi distribution function 𝑓(𝐸) =  
1

1+ 𝑒(𝐸− 𝐸𝐹)/𝑘𝑇
      …..(3) 

Substituting (2) and (3) in equation (1) we get 

𝑛(𝐸)𝑑𝐸 =  
8 √2 𝜋 𝑉 𝑚3/2

ℎ3 √𝐸
1

1+ 𝑒(𝐸− 𝐸𝐹)/𝑘𝑇
      ……(4) 

The total number of electrons in the system is given by integrating the above 

equation 

𝑁 =  
8 √2 𝜋 𝑉 𝑚3/2

ℎ3 ∫
√𝐸  𝑑𝐸

1+ 𝑒(𝐸− 𝐸𝐹)/𝑘𝑇

∞

0
     …..(5) 

At absolute zero temperature, the maximum energy of the electron is the Fermi 

energy EF 

Thus 𝑁 =  
8 √2 𝜋 𝑉 𝑚3/2

ℎ3 ∫ √𝐸  𝑑𝐸
𝐸𝐹

0
 ,      (∵  1 +  𝑒(𝐸− 𝐸𝐹)/𝑘𝑇 = 1 As E < EF thus E - EF is 

negative and at absolute zero temperature 𝑒(𝐸− 𝐸𝐹)/𝑘×0 = 𝑒−∞  = 0) 

Integrating, we get     𝑁 =  
8√2 𝜋 𝑉 𝑚3/2

ℎ3

2

3
𝐸𝐹

3/2
      or       𝑁 =  

8 𝜋 𝑉

3
(

2 𝑚

ℎ2 )
3/2

𝐸𝐹
3/2 

Rising the power of the above equation to 2/3,      𝑁2/3 =  (
8 𝜋 𝑉

3
)

2/3 2 𝑚

ℎ2  𝐸𝐹 

Simplifying the above equation, the expression for Fermi energy is given by 

𝑬𝑭 =  
𝒉𝟐

𝟐 𝒎
(

𝟑 𝑵

𝟖 𝝅 𝑽 
)

𝟐/𝟑
      …..(6) 
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From the above equation it is observed that EF depends only on the density of 

electrons given by n = N/V 

Thus  𝑬𝑭 =  
𝒉𝟐

𝟐 𝒎
(

𝟑 𝒏

𝟖 𝝅  
)

𝟐/𝟑
 This is the expression for fermi energy at absolute zero 

temperature. 

EF is independent of size of the metal. The values of EF for few metals are given 

by 4.72 eV for lithium, 3.12 eV for sodium, 7 eV for copper at absolute zero 

temperature. 

The value of Fermi energy at any other high temperature is  

𝐸𝐹 =  𝐸𝐹(0) [1 −  
𝜋2

12
(

𝑘 𝑇

𝐸𝐹(0)
)

2

]  where EF(0) is Fermi energy at absolute zero 

temperature. At room temperature, the change in Fermi energy is very small 

compared to that at absolute temperature. 

 

Electron energy distribution 

The number of electrons in an electron 

gas that have energies between E and E 

+ dE is   n(E) dE = g(E)dEf(E) 

𝑛(𝐸)𝑑𝐸 =  
8 √2 𝜋 𝑉 𝑚3/2

ℎ3 √𝐸
1

1+ 𝑒(𝐸− 𝐸𝐹)/𝑘𝑇
 ….(1) 

As 𝑬𝑭 =  
𝒉𝟐

𝟐 𝒎
(

𝟑 𝑵

𝟖 𝝅 𝑽 
)

𝟐/𝟑

  

or 𝑁2/3 =  (
8 𝜋 𝑉

3
)

2/3 2 𝑚

ℎ2 𝐸𝐹  

or 𝑁 =  
8 𝜋 𝑉

3
(

2 𝑚

ℎ2 )
3/2

𝐸𝐹
3/2      or      

8 𝜋 𝑉 2√2

3
(

 𝑚

ℎ2)
3/2

=  
𝑁

𝐸𝐹
3/2 

This implies that 
8 √2 𝜋 𝑉 𝑚3/2

ℎ3 =  
3 𝑁

2 𝐸𝐹
3/2 =  

3 𝑁

2
𝐸𝐹

− 3/2
    …..(2) 

Thus, substituting for the terms of LHS of (2) in (1) we get  

𝑛(𝐸)𝑑𝐸 =
3 𝑁

2
𝐸𝐹

− 3/2 √𝐸 𝑑𝐸 

1+ 𝑒(𝐸− 𝐸𝐹)/𝑘𝑇
   where 𝑛(𝐸)𝑑𝐸 ∝  √𝐸 

The above equation is plotted for T = 0 K and for temperature greater than 0 K. 

 

Expression for average kinetic energy of electrons at absolute 

zero temperature 

The number of electrons in an electron gas that have energies between E and E 

+ dE is         n(E) dE = g(E)dE f(E)    …….(1) 

where g(E) is the density of states given by 𝑔(𝐸) =  
8 √2 𝜋 𝑉 𝑚3/2

ℎ3 √𝐸 

and  f(E) is the Fermi distribution function 𝑓(𝐸) =  
1

1+ 𝑒(𝐸− 𝐸𝐹)/𝑘𝑇
 

Substituting above expressions in equation (1) we get 

𝑛(𝐸)𝑑𝐸 =  
8 √2 𝜋 𝑉 𝑚3/2

ℎ3 √𝐸
1

1+ 𝑒(𝐸− 𝐸𝐹)/𝑘𝑇
  …(2)   (∵  1 +  𝑒(𝐸− 𝐸𝐹)/𝑘𝑇 = 1 As E < EF thus E - 

EF is negative and at absolute zero temperature 𝑒(𝐸− 𝐸𝐹)/𝑘×0 = 𝑒−∞  = 0) 

 

  

 

 

 

 

 

 E 

n
(E

) 
d

E
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 Also 𝑬𝑭 =  
𝒉𝟐

𝟐 𝒎
(

𝟑 𝑵

𝟖 𝝅 𝑽 
)

𝟐/𝟑

  or 𝑁2/3 =  (
8 𝜋 𝑉

3
)

2/3 2 𝑚

ℎ2 𝐸𝐹  

Or 𝑁 =  
8 𝜋 𝑉

3
(

2 𝑚

ℎ2 )
3/2

𝐸𝐹
3/2 

This implies that 
8 √2 𝜋 𝑉 𝑚3/2

ℎ3
=  

3 𝑁

2 𝐸𝐹
3/2 =  

3 𝑁

2
𝐸𝐹

− 3/2
   …..(3) 

Thus equation (2) after substituting from (3) is given by  

𝑛(𝐸) 𝑑𝐸 =  (
3 𝑁

2
) 𝐸𝐹

− 3/2
𝐸1/2𝑑𝐸  

Total energy at absolute temperature is given by 

𝐸0 =  ∫ 𝐸 𝑛(𝐸) 𝑑𝐸 =  
3 𝑁

2
𝐸𝐹

− 3/2
∫ 𝐸 𝐸1/2 𝑑𝐸

𝐸𝐹

0

𝐸𝐹

0
  

𝐸0 = ∫ 𝐸 𝑛(𝐸) 𝑑𝐸 =  
3 𝑁

2
𝐸𝐹

− 3/2
∫ 𝐸3/2 𝑑𝐸

𝐸𝐹

0

𝐸𝐹

0
  

𝐸0 =  
3 𝑁

2
𝐸𝐹

− 3/2 𝐸𝐹
5/2

5/2
 =  

3

5
 𝑁 𝐸𝐹 

The average electron energy at absolute zero temperature is given by 

𝐸̅0 =  
𝐸0

𝑁 
=  

3 

5
𝐸𝐹   Thus 𝑬̅𝟎 =  

𝟑 

𝟓
𝑬𝑭 

 

Note :The expression for Fermi momentum is 𝒑𝑭 =  √𝟐 𝒎 𝑬𝑭 

Fermi velocity is the average velocity of an electron in an atom at absolute 

temperature given by 𝒗𝑭 =  √
𝟐 𝑬𝑭

𝒎
. 

Fermi temperature is given by 𝑻𝑭 =  
𝑬𝑭

𝒌
 where k is the Boltzmann constant. 

 

Hall effect 

When a metal or a semiconductor 

carrying an electric current is placed in a 

magnetic field, an electric field is 

produced inside the material in a 

direction which is at right angles to both 

the current and the magnetic field.  This 

was discovered by Edwin H Hall and is 

called the Hall effect. 

Hall effect in a metal :  Consider a metal in the 

form of a rectangular slab as shown. Let the current 

be  𝐼 flowing along the positive X direction. 𝐽 is the 

current density (ratio of current to area) also along 

the + X direction. Let a magnetic field of strength B 

be applied along the + Z direction. The electrons 

which are moving along the negative X direction will 

experience a Lorentz force given by 𝐹 = 𝑒𝑣𝐵 …..(1)   (since 𝐹 = 𝑒𝑣𝐵 𝑠𝑖𝑛𝜃 with  𝜃 =
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900) where e is the charge on the electron, v is the velocity with which electron 

is moving.   This force acts along the negative Y direction (Fleming left hand 

rule).  

Under the action of the Lorentz force, the electrons collect at the bottom surface 

of the metal slab making it negative and the top surface becomes positive. Thus 

an electric field is created called the Hall field 𝐸𝐻 along the negative Y axis.  

Now the electrons experience a force due to electric field given by 𝐹 = 𝑒𝐸𝐻. …(2) 

This force is opposite to the Lorentz force and at equilibrium the two are equal 

given by    𝑒𝐸𝐻 = 𝑒𝑣𝐵      or  𝐸𝐻 = 𝑣𝐵   …..(3) 

The current in the conductor is given by 𝐼 =  𝑛𝑒𝐴𝑣 .  

The current density 𝐽 =  
𝐼

𝐴
=  

𝑛𝑒𝐴𝑣

𝐴
= 𝑛𝑒𝑣   where 𝑛 is the number of electrons per 

unit volume. From the above equation  𝑣 =  
𝐽

𝑛 𝑒
     ……(4)  

Substituting for 𝑣 from (4) in (3)  𝑬𝑯 =  
𝑱 𝑩

𝒏 𝒆
=  𝑹𝑯𝑩𝑱  ….(5)  where   𝑹𝑯 =  

𝟏

𝒏 𝒆
  

𝑅𝐻  is called the Hall coefficient which depend on the nature of the conductor. 

In case of a metal as electrons are the charge carriers, the Hall coefficient is 

negative i.e. 𝑹𝑯 = − 
𝟏

𝒏 𝒆
 . 

If 𝑉𝐻 is the Hall voltage generated in the metal of thickness 𝑑, then 𝐸𝐻 =  
𝑉𝐻

𝑑
. 

Thus  from equation (5)   
𝑉𝐻

𝑑
=  𝑅𝐻𝐵𝐽        or   𝑉𝐻 =  𝑅𝐻𝐵𝐽𝑑      or  𝑽𝑯 =  

𝑩𝑱𝒅

𝒏𝒆
       

Importance of Hall effect 

1. The sign of the current carrying charge can be determined by the Hall 

effect. 

2.  The electron concentration (number of electrons per unit volume) can 

be calculated by measuring Hall coefficient. 

3.  The mobility of electrons can be measured directly. 

4.  Hall effect can used to find the electronic structure of the material. 

5. Knowing 𝑅𝐻 , the magnetic field can be measured from Hall voltage.    
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Superconductivity 

Introduction : In general the electrical resistivity 𝜌  of metals and alloys 

decreases when they are cooled(i.e. temperature is decreased). When the 

temperature is lowered the thermal vibrations of the atoms decreases and the 

conduction electrons are less frequently scattered. For a perfectly pure metal, 

the resistivity must approach zero as the temperature approaches absolute zero. 

This is not real as any metal will always possess impurity. Thus there is always 

some residual resistivity 𝜌0   or electrical resistance even at absolute zero 

temperature.  

Certain metals, however, show a remarkable behaviour when they are cooled. 

As the temperature is lowered the resistivity decreases as usual, but at a certain 

low temperature close to absolute zero, the resistivity suddenly reduces to zero. 

Then they are said to have passed into superconducting state.  

Superconductivity is a phenomenon of certain materials attaining exactly zero 

electrical resistance and expulsion of magnetic flux fields, when cooled below a 

characteristic critical temperature.  

It was discovered by Dutch physicist Kamerlingh Onnes 

in the year 1911. Onnes, after having 

successfully liquified helium in 1908, investigated the 

low temperature resistivity of mercury in 1911. The 

mercury could be made very pure by distillation, and 

this was important because the resistivity at low 

temperatures tends to be dominated by impurity effects. 

He found that the resistivity suddenly dropped to zero at 

4.2K, a phase transition to a zero resistance state. This phenomenon was 

called superconductivity, and the temperature at which it occurred is called 

its critical temperature.  

Critical temperature 𝑻𝑪 : The critical temperature 

or transition temperature for superconductors is the 

temperature at which the electrical resistivity of a metal 

drops to zero as shown in the graph. The transition is 

so sudden and complete that it appears to be a 

transition to a different phase of matter. This 

superconducting phase is described by the BCS theory. 

Several materials exhibit superconducting phase 

transitions at low temperatures. The highest critical temperature was about 23 

K until the discovery in 1986 of some high temperature superconductors. 

Materials with critical temperatures in the range 120 K have received a great deal of 

attention because they can be maintained in the superconducting state with liquid 

http://hyperphysics.phy-astr.gsu.edu/hbase/lhel.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scond.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scond.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scond.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/bcs.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/hitc.html#c1
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nitrogen (77 K). Eg. Gallium 𝑇𝐶 = 1.1 𝐾,  Aluminium 𝑇𝐶 = 1.2 𝐾, Indium 𝑇𝐶 = 3.4 𝐾 

Tin  𝑇𝐶 = 3.7 𝐾 , Lead 𝑇𝐶 = 7.2 𝐾 , Niobium 𝑇𝐶 = 9.3 𝐾  La-Ba-Cu-oxide 𝑇𝐶 = 17.9 𝐾 

and Y-Ba-Cu-oxide  𝑇𝐶 = 92 𝐾. 

 

Experimental Facts 

1. When impurities are added to superconducting elements, the 

superconducting property is not lost but the transition temperature is lowered.  

2.  Isotope effect : It has been observed that the critical temperature of 

superconductors varies with isotopic mass. In Mercury 𝑇𝐶 varies from 4.185 K 

to 4.146 K as the average atomic mass M varies from 199.5 to 203.4 amu. They 

obey a relation 𝑇𝐶√𝑀 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . The variation of critical temperature with 

isotopic mass is called isotope effect. 

3.  The thermal properties such as the specific heat capacity and thermal 

conductivity of a substance change abruptly, when it passes over to 

superconducting state.  

(a) Specific heat : The specific heat of a normal metal at 

low temperature is of the form 𝐶𝑛(𝑇) =  𝛾𝑇 +  𝛽𝑇3 . The 

first term on the right hand side is the specific heat of 

electrons in the metal and the second term is the 

contribution of lattice vibrations. But from the graph it 

is seen that a superconductor shows a jump at critical 

temperature 𝑇𝐶 . Since the superconductivity affects 

electrons mainly, the second contribution 𝛽𝑇3 almost remains the same in the 

superconducting state. The variation of electronic specific heat 𝐶𝑒𝑠 is nonlinear 

with temperature. It is given by  𝐶𝑒𝑠(𝑇) = 𝐴 𝑒
− 

∆

𝑘𝐵𝑇. 

An exponential dependence implies that it requires a finite energy ∆ to excite an 

individual electron in a superconductor.  

(b) Thermal conductivity : The thermal conductivity of 

superconductors undergo a continuous change between 

the two phases (normal and superconducting) and is 

usually lower in the superconducting phase. This suggest 

that the electronic contribution drops and possibly the 

superconducting electrons playing no part in the heat 

transfer. The thermal conductivity of tin at 2K is 3400 

Wm-1K-1 for normal phase and 1600 Wm-1K-1 for the 

superconducting phase. The variation is as shown in the 

graph. 
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4  Persistent currents : The fact that the resistance is zero has been 

demonstrated by sustaining currents or persistent currents in superconducting 

lead rings for many years with no measurable reduction. An induced current in 

an ordinary metal ring would decay rapidly from the dissipation of ordinary 

resistance, but superconducting rings had exhibited a decay constant of over a 

billion years. Thus currents persists in a superconducting ring over very long 

time. 

In a superconducting state, since the dc electrical resistance is practically zero, 

persistent current is observed to flow in superconducting rings. The current 

flowing in a ring at any time t due to changing magnetic flux density B is given 

by Lenz law according to which − 𝐴 
𝑑𝐵

𝑑𝑡
= 𝑅(𝑡) + 𝐿 

𝑑𝐼

𝑑𝑡
     where A is the area, R is 

the resistance of the ring and L is the inductance of the ring. If there is no 

external magnetic field applied to the ring  B = 0. 

Thus 𝑅(𝑡) + 𝐿 
𝑑𝐼

𝑑𝑡
= 0    The solution of this equation can be written as 

 𝐼(𝑡) = 𝐼(0)𝑒−
𝑅

𝐿
𝑡
 . The current decays in the ring exponentially in the absence of 

the external magnetic field. But if the ring is a superconductor, then resistance 

is zero i.e. R = 0, thus    𝐼(𝑡) = 𝐼(0). Thus the current does not decay with time 

and remains the same called the persistent current.  

5    Critical magnetic field : Destruction of 

superconductivity by magnetic fields : If a 

strong magnetic field called critical magnetic 

field is applied to a superconducting 

specimen, it becomes normal conductor and 

recovers normal resistivity even at 𝑇 <  𝑇𝐶. The 

critical value of the applied magnetic field for the destruction of the 

superconductivity is denoted by  𝐵𝐶(𝑇) and 

is a function of temperature. It is called 

critical field. For a given substance, the 

value of 𝐻𝐶  decreases as the temperature 

increases from 𝑇 = 0 𝐾 𝑡𝑜 𝑇 =  𝑇𝐶 . The 

variation can be expressed by the formula 

𝐵𝐶(𝑇) =  𝐵𝐶(0) [1 −  (
𝑇

𝑇𝐶
)

2

]   where    𝐵𝐶(0) is 

the critical field at 0 K. At the critical temperature 𝑇𝐶 the critical field is zero,  

𝐵𝐶(𝑇𝐶) = 0. This result is expected, because at 𝑇 =  𝑇𝐶 , the specimen is already 

normal and field is necessary for this transition. The variation of critical field 

with temperature is as shown in the graph for mercury. Generally for all 

substances the variation is the same.  

HC 

TC      T 

Normal 

phase 

Superconducting 

phase 
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Meissner effect  

In 1933, Meissner and Ochsenfold measured the magnetic flux distribution 

outside Tin and Lead specimen which has been cooled below their transition 

temperature while in the magnetic field. They found that at their transition 

temperatures the specimens spontaneously became 

perfectly diamagnetic, cancelling all the flux even though 

they are inside the magnetic field.  

When a conductor is cooled in a magnetic field to 

temperature below the critical temperature then, at the 

critical temperature the magnetic field lines are expelled 

from the interior of the superconductor. This phenomenon 

is called the Meissner effect. Thus at T  Tc when magnetic field is expelled from 

the material the superconductor is said to exhibit diamagnetism. Thus in the 

superconducting state, the magnetic flux density inside it is zero. i.e. 𝐵 = 0.  

The magnetic flux density 𝐵 along a specific direction within a material is given 

by 

 𝐵 =  𝜇0(𝐻 + 𝐼) ….(1)   where H is the applied magnetic field and  𝐼 is the intensity 

of magnetization, 

𝐵

𝐻
=  𝜇0  (1 +  

𝐼

𝐻
)      But   

𝐼

𝐻
=  𝜒 called the volume magnetic susceptibility of the 

specimen. 

Thus   
𝐵

𝐻
=  𝜇0 (1 +  𝜒)      For a superconductor  𝐵 = 0, thus the equation reduces 

to     𝜒 =  −1 . 

The negative sign indicates that the specimen is a  diamagnet.   

The superconducting state is a characteristic thermodynamic phase of a 

substance in which the material cannot sustain stead electric and magnetic 

fields. Thus the two mutually independent properties of a superconductor are : 

(1) zero resistivity (𝜌 = 0   𝑎𝑛𝑑  𝐸 = 0) and (2) perfect diamagnetism ( 𝐵 = 0 𝑎𝑛𝑑 𝜒 =

 −1). They are essential properties that characterize the superconducting state. 

Critical current density 

The magnetic field which causes the superconductor to become normal from a 

superconducting state need not necessarily by an external magnetic field. It may 

arise as a result of electric current flow in the conductor. If the field produced 

by the current in the conductor exceeds critical field 𝐻𝐶, the superconductivity 

disappears. The maximum current density 𝐽  at which the superconductivity 

disappears is called the critical current density 𝐽𝐶.  
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For a ring of radius 𝑟 carrying a current 𝐼, the magnetic field is given by 𝐻𝑖 =  
𝐼

2𝜋𝑟
.  

If 𝐻𝑖 exceeds 𝐻𝐶, the superconductor becomes normal. If a transverse magnetic 

field is also applied to the ring, then the critical magnetic field is given by  

𝐻𝐶 =  𝐻𝑖 + 2𝐻      or     𝐻𝐶 =  
𝐼𝐶

2𝜋𝑟
+ 2𝐻     or       𝐼𝐶 =  (𝐻𝐶 − 2ℎ)2𝜋𝑟 . This is called 

Sisbee’s rule. If the applied field is zero, 𝐻 = 0, then the critical current is 

 𝐼𝐶 = 2𝜋𝑟𝐻𝐶  .  Thus a superconductor loses to be so if the current is critical 

current given by the above expression in a ring. This puts a limit to the current 

that can flow in a ring for the material to remain as a superconductor.  

Types of superconductors 

Type I and Type II superconductors 

Depending upon their behaviour in an external magnetic 

field, superconductors are divided into two types: a) Type I superconductors and 

b) Type II superconductors 

 

1) Type I superconductors: 

a). Type I superconductors are those superconductors which loose their 

superconductivity very easily or abruptly when placed in the external magnetic 

field. As can be seen from the graph of intensity of magnetization (M) versus 

applied magnetic field (H), when the Type I superconductor is placed in the 

magnetic field, it suddenly or easily looses its superconductivity at critical 

magnetic field 𝐻𝐶.  

After 𝐻𝐶 , the Type I 

superconductor will become 

conductor. 

b). Type I superconductors 

are also known as soft 

superconductors because of 

the reason that they loose 

their superconductivity 

easily. 

c) Type I superconductors perfectly obey Meissner effect. 

d) Example of Type I superconductors: Aluminum (𝐻𝐶 = 0.0105 T), Zinc (𝐻𝐶 = 

0.0054T) 

 

2) Type II superconductors: 

a). Type II superconductors are those superconductors which loose their 

superconductivity gradually but not easily or abruptly when placed in the 

external magnetic field. As you can see from the graph of intensity of 

magnetization (M) versus applied magnetic field (H), when the Type II 

http://www.winnerscience.com/superconductivity/superconductors-critical-temperature-critical-magnetic-field-and-meissner-effect/
http://www.winnerscience.com/superconductivity/superconductors-critical-temperature-critical-magnetic-field-and-meissner-effect/


Paper VI :Unit 2 (503) - Solid State Physics  
 

V Semester B.Sc. Physics                    Dr. K S Suresh Page 32 
 

superconductor is placed in the magnetic field, it gradually looses its 

superconductivity. Type II superconductors start to loose their 

superconductivity at lower critical magnetic field (𝐻𝐶1) and completely loose their 

superconductivity at upper critical magnetic field (𝐻𝐶2).  

 

b) The state between the lower critical magnetic field (𝐻𝐶1) and upper critical 

magnetic field (𝐻𝐶2) is known as vortex state or intermediate state. 

After 𝐻𝐶1), the Type II superconductor will become conductor. 

c). Type II superconductors are also known as hard superconductors because 

of reason that is they loose their superconductivity gradually but not easily. 

c) Type II superconductors obey Meissner effect but not completely. 

d) Example of Type II superconductors: NbN (𝐻𝐶  = 8 x 106 T), Babi3(𝐻𝐶= 59 x 

103 T) 

e) Application of Type II superconductors: Type II superconductors are used for 

strong field superconducting magnets. 

 

Differences between Type I and Type II superconductors 

S. 

No. 

Type I superconductor Type II superconductor 

1 They are Soft superconductors 

that can tolerate the impurities 
without affecting the 
superconducting properties 

They are Hard superconductors 

that canot tolerate the impurities. 
The presence of impurities affect 
the  superconducting properties 

2 They have low critical magnetic 
field 

They have high critical magnetic  
field 

3 They exhibit complete 
Meissner effect 

They trap magnetic flux and hence 
Meissner effect is not complete 

4 The current flows through the 
surface only 

The current flows throughout the 
material 

5 Eg. Tin, Aluminium Eg. Tantalum, Niobium  

 

BCS theory :  

The properties of Type I superconductors were modelled successfully by the 

efforts of John Bardeen, Leon Cooper, and Robert Schrieffer in what is commonly 

called the BCS theory. A key conceptual element in this theory is the pairing of 

electrons close to the Fermi level into Cooper pairs through interaction with the 

crystal lattice. This pairing results from a slight attraction between the electrons 

related to lattice vibrations; the coupling to the lattice is called a phonon 

interaction. 

Cooper pairs : The behavior of superconductors suggests that electron pairs are 

coupling over a range of hundreds of nanometers, three orders of magnitude 

http://www.winnerscience.com/superconductivity/superconductors-critical-temperature-critical-magnetic-field-and-meissner-effect/
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scond.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/fermi.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scond.html#c1
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larger than the lattice spacing. Called Cooper pairs, these coupled electrons can 

take the character of a boson and condense into the 

ground state. 

This pair condensation is the basis for the BCS 

theory of superconductivity. The effective net 

attraction between the normally repulsive electrons 

produces a pair binding energy on the order of milli-electron volts, enough to 

keep them paired at extremely low temperatures. 

Pairs of electrons can behave very differently from single electrons which 

are fermions and must obey the Pauli exclusion principle. The pairs of electrons 

act more like bosons which can condense into the same energy level. The 

electron pairs have a slightly lower energy and leave an energy gap above them 

on the order of 0.001 eV which inhibits the kind of collision interactions which 

lead to ordinary resistivity. For temperatures such that the thermal energy is 

less than the band gap, the material exhibits zero resistivity. 

Bardeen, Cooper, and Schrieffer received the Nobel Prize in 1972 for the 

development of the theory of superconductivity. 

 

High temperature superconductors: 

It was generally believed that Superconductivity is exhibited only by materials 

at very low temperatures. The alloy Nb3Ge had the highest known Tc equal to 

23.2 K. In the year 1986 George Bednorz and Karl Alex Muller discovered that 

an oxide of lanthanum, barium and copper (La-Ba-Cu-O) became 

superconducting at 30 K. Then it was thought that superconductivity could be 

achieved even at higher temperature. This lead to the production of materials 

with higher and higher values of T. Some examples of high temperature 

superconductors are Ti2Ba2Ca2Cu3O10 with Tc = 125K and Hg Ba2Ca2Cu3O10 at 

Tc = 134K. 

Applications of superconductors: 

(1) Superconductors are used in making magnets that can produce very strong 

magnetic fields. 

(2) The ability of superconductors to conduct electricity with zero resistance 

leads to its application in efficient transmission and distribution of electrical 

power. 

(3) SQUIDS (superconducting quantum interference devices) are used to detect 

magnetic fields as low as 10-14T.   

(4) The Meissner effect exhibited by superconductors is used in magnetic 

levitation. That is, a small permanent magnet can be made to float above a 

superconductor. 

(5) Superconducting magnets are used in MRI (magnetic resonance imaging) 

scanning devices. 

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/bcs.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/bcs.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/particles/spinc.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/pauli.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/particles/spinc.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/particles/spinc.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/bcs.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/resis.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/eqpar.html#c2
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(6) A current generated once in a circular ring of superconductor remains for 

infinite time. This property can be used as memory device or information 

storage in a computer.  

SQUIDS : A superconducting quantum interference device (SQUID) is a very sensitive 

device for measuring weak magnetic fields. It is capable of measuring magnetic fields 

as low as 5 aT (5×10-18 T). Due to their sensitivity, SQUIDs are widely used in research, 

biological studies and other ultrasensitive electronic and magnetic measurements 

where faint signals cannot be sensed using conventional measurement instruments. 

There are two types of SQUID, the radio frequency (RF) SQUID consisting of only one 

Josephson junction, and the direct current (DC) SQUID with two or more junctions. 

The RF is cheaper in construction but less sensitive compared to the DC. 

A typical DC SQUID has two parallel junctions inserted in a superconducting loop. 

Without a magnetic field, the input current splits equally between the branches. This 

maintains an externally connected tank circuit at resonance. Any external magnetic 

field causes a change in the resonant frequency in the tank circuit, and a current 

imbalance that leads to a voltage across the Josephson junction. The voltage is a 

function of the magnetic flux and can therefore be measured and used to calculate the 

magnetic flux. 

The superconducting materials used for low-temperature SQUIDs are pure niobium or 

lead alloys. The device is cooled with liquid helium to maintain superconductivity. High-

temperature SQUIDs are made from high-temperature superconductors such as 

yttrium barium copper oxide (YBCO) and cooled with the cheaper and readily available 

liquid nitrogen. However, they are not as sensitive as the low-temperature models, but 

are good enough for certain applications. 

A SQUID is very sensitive in detection of magnetic energy fields, as low as 100 billion 

times smaller in magnitude than the energy that moves a compass needle. This extreme 

sensitivity makes them ideal for highly sensitive applications in research, biological 

studies and medical tests where the magnetic fields present cannot be measured using 

conventional instruments. 

For example, SQUIDS are used in measuring faint signals in the human brain or heart 

by sensing the magnetic fields created by the neurological currents. Other applications 

include the construction of highly sensitive gradiometers, magnetometers and 

voltmeters. 

 

Josephson junction : Two superconductors separated by a thin insulating layer can 

experience tunneling of Cooper pairs of electrons through the junction. The Cooper 

pairs on each side of the junction can be represented by a wavefunction similar to a free 

particle wavefunction. In the DC Josephson effect, a current proportional to the phase 

difference of the wavefunctions can flow in the junction in the absence of a voltage. In 

the AC Josephson effect, a Josephson junction will oscillate with a characteristic 

frequency which is proportional to the voltage across the junction. Since frequencies 

can be measured with great accuracy, a Josephson junction device has become 

the standard measure of voltage. 

 

 

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/coop.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/scheq.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/scheq.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/Squid.html#c4
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PART A 

1. (a) Mention the basic properties of metals. 

(b) Derive an expression for electrical conductivity of a metal based on free electron 

theory. Hence establish Ohm’s law.  

2.   (a) Derive the expression for thermal conductivity of the metal based on free electron 

theory.  

      (b) State and   explain Weidman-Franz law. 

3   (a) Define the density of states for free electron. Derive an expression for density of 

states for free electron. 

(b) Explain Fermi distribution function.   

4  (a) What is Fermi energy?  

(b) Obtain the expressions for Fermi energy of a metal.  

5   (a) Explain electron energy distribution with the help of a graph in case of metals. 

      (b) Arrive at the average kinetic energy of electrons at absolute zero temperature.  

6  (a)  Define Hall effect. Derive an expression for Hall voltage and Hall field in the case 

of metals and hence derive an expression for Hall co-efficient.  

     (b) Write a note on importance of Hall effect. 

7   (a) What is superconductivity? Explain. 

      (b) Expalin critical field, critical temperature and critical current density.  

8 (a) Explain Meissner effect. Explain any three experimental facts about 

superconductivity. 

      (b) Explain the Type I and type II superconductors. 

9  (a) Writa a note on BCS theory. 

 (b) What is SQUID? Explain. Explain any three applications of superconductivity. 

 

PART B 

1   Calculate the drift velocity of the free electrons in a conductor of area 10−4𝑚2 given 

the electron density to be 8 × 1028𝑚−3 when a current of 5 A flows in it.  

     [Hint : 𝑣𝑑 =  
𝐼

𝑛𝑒𝐴
 ] 

2   The drift velocity of free electrons in a metal wire of diameter 5 mm is  6 ×  10−4𝑚𝑠−1. 

The current is 10 A. Calculate the electron density. 

     [ Hint :  𝑛 =  
𝐼

𝑒𝐴𝑣𝑑
   where    𝐴 =  𝜋𝑟2 ] 

3  Calculate the relaxation time of free electrons in copper of atomic weight 63.5. Density 

of copper is 8.94 ×  103 𝑘𝑔𝑚3and electrical conductivity is 6 × 107𝑚ℎ𝑜 𝑚−1. 

    [Hint : 𝐽 =
𝑛 𝑒2𝐸 𝜏

2 𝑚
,As 𝜎 =  

𝐽

𝐸
=

𝑛𝑒2𝜏

2𝑚
  or 𝜏 =  

2𝜎 𝑚

𝑛𝑒2    𝑤ℎ𝑒𝑟𝑒   𝑛 =
𝑁𝐴

𝑉
=  

𝜌𝑁𝐴

𝑀
=  

8.94 × 103 ×6.02×1026

63.5
[ 

4  Calculate the electrical conductivity of copper from the following data : atomic weight 

of copper = 63.5, density of copper = 8.94 × 103 𝑘𝑔𝑚3   and relaxation time = 

2.48 × 10−14𝑠 .       [ Hint: 𝜎 =  
𝑛𝑒2𝜏

2𝑚
 ] 

5  Find the Fermi energy in copper on the assumption that each copper atom 

contributes one free electron to the electron gas. The density of copper is 

8.94 × 103 𝑘𝑔𝑚3and its atomic mass = 63.5 amu Given 1 amu = 1.66X10-27kg. 
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     [ Hint : 𝑛 =  
𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠
 =

8.94 × 103

63.5 ×1.667 ×19−27 ,     𝐸𝐹 =

 
ℎ2

2 𝑚
(

3 𝑛

8 𝜋  
)

2/3

𝐽,   𝑡𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑒𝑉 𝑑𝑖𝑣𝑖𝑑𝑒 𝑏𝑦 1.6 × 10−19 𝐸𝐹(𝐶𝑢) = 7.04 𝑒𝑉 ] 

6   Calculate the fermi energy for lithium and sodium given their densities to be 534 

and 971𝑘𝑔𝑚−3 and their atomic weights to be 6.931 and 22.99 amu respectively. 

    [Hint: 𝐸𝐹 =  
ℎ2

2 𝑚
(

3 𝑛

8 𝜋  
)

2/3

𝐽, 𝑡𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑡 𝑒𝑉 𝑑𝑖𝑣𝑖𝑑𝑒 𝑏𝑦 1.6 × 10−19   𝐸𝐹(𝐿𝑖) =

4.7 𝑒𝑉,   𝐸𝐹(𝑁𝑎) =  3.152𝑒𝑉] 

7  The fermi energy of silver is 5.5 eV. Calculate the fermi temperature and fermi 

velocity. 

    [ Hint : 𝑇𝐹 =  
𝐸𝐹

𝑘
      𝑎𝑛𝑑    𝑣𝐹 =  √

2 𝐸𝐹

𝑚
.    Convert eV to J by multiplying with 

1.6 × 10−19    ]  

8  The fermi energy of copper is 7.1 eV. Calculate the number of electrons per 

unit volume, given the density of copper is  8.94 ×  103 𝑘𝑔𝑚3 . 

    [ Hint :  𝐸𝐹 =  
ℎ2

2 𝑚
(

3 𝑛

8 𝜋  
)

2/3

  to calculate n]  

9  A copper wire of cross sectional area 5 ×  10−6 𝑚2 carries a steady current of 50 

A. Assuming one free electron per atom, calculate the (1) density of free electrons, (2) 

drift velocity of the electrons and (3) relaxation time given resistivity of copper is 

1.7 ×  10−8 Ω𝑚 . 

     [ Hint  :  𝑛 =  
𝜌𝑁𝐴

𝑀
 ,       𝑣𝑑 =  

𝐼

𝑛𝑒𝐴
 ,     𝜌 =  

2𝑚

𝑛𝑒2𝜏
   ,  to find 𝜏 ] 

10  A current of 50 A is established in a copper slab 0.5 cm thick and 2cm wide. The 

slab is placed in a magnetic field of 1.5 T. The magnetic field is perpendicular to the 

plane of the slab and to the current. The free electron concentration in copper is 

8.48x1028 electron/m3. What is the magnitude of Hall voltage across the width of 

the slab? [ Hint : 𝑉𝐻 =  
𝐵𝐽𝑑

𝑛𝑒
    where 𝐽 =  

𝐼

𝐴
  and  𝐴 = 𝑤𝑖𝑑𝑡ℎ(𝑤) × 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠𝑠 (𝑑) ] 

11  Calculate the Hall coefficient of sodium, if the number of free electrons per unit 

volume is 2.55 × 1028𝑚−3 . 

     [ Hint : 𝑅𝐻 =  − 
1

𝑛𝑒
   ] 

      

 

 

 

 

 

 

 

 

 

 


