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Radiation is a mode of transfer of heat from one place to another without the 

requirement of the intervening medium which does not get heated during the 

process.  

The radiant energy emitted by a body on account of its temperature is called thermal 

radiation. It is a particular range of electromagnetic radiation of wavelength ranging 

from 0.1 m to 100 m. This includes UV, visible and IR regions of EM spectrum.  

Thermal radiation is an inherent property of all bodies. According to Prevost’s 

theory of heat exchanges, every body absorbs and emits radiant energy continuously 

at all temperatures above absolute zero temperature (> 0 K).  

Basic definitions 

1 Total Energy density – The total radiant energy per unit volume around a point 

due to all wavelengths.  

2  Emissive power of a body corresponding to a particular temperature and for a 

given wavelength is the amount of radiant energy emitted per unit time per unit 

surface area of the body within unit wavelength interval around  . It is represented 

by e  . 

3 Emissivity ( )  of a body at a given temperature is the ratio of emissive power of 

the body ( )e  to the emissive power of perfectly black body ( )E  at that 

temperature. 

4  Absorptive power of a body at a given temperature and for a given wavelength is 

the ratio of radiant energy absorbed per second per unit surface area of the body to 

the total energy falling per second on the same area. It is denoted by 𝑎𝜆. 

5  When thermal radiation is incident on a body (Q), a part of it is absorbed (Qa), a 

part is reflected (Qr) and the remaining part is transmitted (Qt) through the body. If 

Q is the amount of incident radiation on a body, then 𝑄 =  𝑄𝑎 +  𝑄𝑟 +  𝑄𝑡    …..(1) 

Dividing (1) by Q,  1 =
𝑄𝑎

𝑄
 +

𝑄𝑟

𝑄
 +

𝑄𝑡

𝑄
 = 𝑎 + 𝑟 + 𝑡 

Thus 1 = 𝑎 + 𝑟 + 𝑡   where a, r and t are the absorption, reflection and transmission 

coefficients.  

If t= 0, then a + r = 1, If a is large r is small. Good absorbers are bad reflectors. If r + t 

= 0, then a = 1, then the body is absorbing all incident radiation. Such a body is 

called a black body. 



B.Sc., Physics - Thermal Radiation 

 

Vijaya College                                     Dr. K S Suresh Page 2 

 

The values of r, a and t depends on nature of surface of the body and the wavelength 

of the incident radiation. 

     Perfect Black Body is that which absorbs all the radiations incident upon it. Thus 

absorptive power of a perfectly black body is unity (i.e. 100%). When such a body is 

heated to high temperature, it would emit radiations of all wavelengths called black 

body radiation. 

     The nature of radiations emitted by a perfectly black body would depend on its 

temperature only and not on mass, size, density or nature of the body. For an ideal 

black body, reflectance and transmittance must be zero. No body in actual practice 

can be perfectly black. The nearest examples of ideal black bodies are lamp black 

(96%) and platinum black (98%). They absorb visible and near infra red radiations, 

but cannot absorb far infra red radiations. 

Kirchhoff’s Law of radiation  

According to this law, at a given temperature and for a given wavelength, the ratio 

of spectral emissive power ( )e  to spectral absorptive power ( )a  for all bodies is 

constant, which is equal to spectral emissive power of a perfectly black body ( )E  

at the same temperature and for the same wavelength i.e.,
e

E
a






=  clearly, e a   i.e. 

good emitters are good absorbers. The law implies that at a particular temperature, a 

body can absorb only those wavelengths, which it is capable of emitting. This law 

has been verified experimentally. 

Let Q be the quantity of heat radiation incident on a body in one second. If Q1 is the 

amount of radiation absorbed by the body and 𝑒𝜆 𝑑𝜆 is the amount of heat energy 

radiated by the body in one second per unit area at a temperature T and wavelength 

, then the total energy given out by the body is  (𝑄 −  𝑄1) + 𝑒𝜆 𝑑𝜆 

𝑄 =  (𝑄 −  𝑄1) + 𝑒𝜆 𝑑𝜆     As 𝑎𝜆 =  
𝑄1

𝑄
   or 𝑄1 =  𝑎𝜆 𝑄   

Thus 𝑄 =  (𝑄 −   𝑎𝜆𝑄) + 𝑒𝜆 𝑑𝜆     or   𝑒𝜆 𝑑𝜆 =  𝑎𝜆𝑄       

𝑒𝜆

 𝑎𝜆
 =

𝑄

𝑑𝜆
   = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 .     ……..(1) 

For a perfect black body 𝑒𝜆 =  𝐸𝜆     and  𝑎𝜆 = 1 

Thus 
𝐸𝜆

1
 =

𝑄

𝑑𝜆
        ……(2)  Comparing (1) and (2)    

𝑒𝜆

 𝑎𝜆
 = 𝐸𝜆 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
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Examples to illustrate Kirchhoff’s law 

1 When a green glass plate is heated in a furnace, it appears red. This is because, at 

ordinary temperatures green glass absorbs red strongly and emits green. At higher 

temperatures it emits red. Thus a good absorber is a good emitter. 

2 A number of dark lines in the solar spectrum called Fraunhofer lines can be 

explained on the basis of Kirchhoff’s law. When radiation from inner regions of sun 

pass through relatively cooler solar atmosphere having different gases, the gases 

absorb radiation of their characteristic wavelengths. These regions appear as dark 

lines. During total solar eclipse, these lines appear bright. By knowing the 

wavelengths of these lines, the presence of different elements in the solar 

atmosphere can be found.   

Stefan’s Law: According to this law, the total energy emitted per sec per unit area 

(E) by a perfectly black body corresponding to all wavelengths is directly 

proportional to fourth power of the absolute temp. (T) of the body. i.e. 

 4E T  or  4E T=  

where   is a constant of proportionality and is called Stefan’s constant. Its value is

   85.67 10 −=   watt 2 4m K− −

.  

If Q is the total amount of heat energy emitted by the black body, then by definition,

   
Q

E
A t

=   ( )4Q A t E A t T=  =  

     Stefan Boltzmann Law According to this law, the net amount of radiation 

emitted per second per unit area of a perfectly black body at temp. T is equal to 

difference in the amounts of radiation emitted per sec per area by the body and by 

the black body enclosure at 0
.T  i.e.  0

'E E E= −  

As  4E T=  and 4

0 0
E T=  

  ( )4 4 4 4

0 0
'E T T T T  = − = −  

Proceeding as above, total energy lost ( )4 4

0
' 'Q E A t A t T T= = −  

If the body and enclosure are not perfectly black and have emissivity e, then   

   ( )4 4

0
'Q e A t T T= −  

Newton’s Law of Cooling 

According to this law, when difference in temperatures of a liquid and its 

surroundings is small, then the rate of loss of heat of the liquid is directly 
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proportional to difference in temperature of liquid and the surrounding. 

 

Black body radiation spectrum 

Lummer and Pringsheim 

investigated the distribution of 

energy emitted by a black body 

at different temperatures. The 

experimental set up used is as 

shown in the diagram.   

The black body used is an 

electrically heated chamber with 

a small aperture. The 

temperature of the black body radiation emitted is measured using a thermocouple.  

The radiation coming out of the slit S1 is incident on the reflector M1. The parallel 

rays from M1 falls on a fluorspar prism placed on the turn table of the spectrometer. 

The emerging radiation is focused on a bolometer placed behind S2 with the help of 

reflector M2. The deflection produced by the galvanometer in the bolometer will 

determine the intensity of radiation. Using the prism dispersion formula, the 

wavelength of the radiation can be measured. Different wavelength radiations are 

deviated to different extents. The experiment is repeated for different temperatures.  

A graph is plotted with wavelength of radiation along X axis and Intensity along Y 

axis as shown. It is referred to as black body radiation spectrum. 

Experimental results  

1 The black body radiation 

spectrum is not having uniform 

distribution of energy with respect 

to wavelength. 

2 At a given temperature, different 

wavelength radiations have 

different energies. The magnitude 

of the emitted energy increases with increase in temperature. 

3 The energy increases with wavelength, reaches a maximum value at a particular 

wavelength and decreases at higher wavelengths. 
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4 The total energy of radiation at any temperature is given by the area under the 

curve. The area is directly proportional to the fourth power of absolute temperature 

i.e. 𝐸 ∝  𝑇4. This is the Stefan’s law. 

 5 The wavelength corresponding to maximum energy shifts towards shorter 

wavelengths with increase in temperature. This is the Wien’s displacement law 

given by 𝜆𝑚  × 𝑇 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.   Where 𝜆𝑚 is the wavelength corresponding to 

maximum energy.   

The distribution of energy in the black body radiation spectrum was first explained 

by Wien with the help of two following laws. 

1 Wien’s displacement Law: According to this law, the wavelength ( )m
  

corresponding to which energy emitted per sec per unit area by a perfect black body 

is maximum, is inversely proportional to the absolute temp. (T) of the black body.

   
1

m
T

   or 
m

b

T
 =  

where b is a constant of proportionality and is called Wien’s constant 
32.898 10b m K−=  . 

Clearly,    1 2

2 1

2

1

m m

m m

vT

T v




= =  

 

2 Wien’s fifth power law : According to this law, the maximum energy of emitted 

radiation Em  is directly proportional to the fifth power of absolute temperature i.e. 

𝐸𝑚  ∝  𝑇5    or  𝐸𝑚 = 𝐾 𝑇5. 

Wien’s distribution law : With the help of above two laws, the expression for 

the energy density of radiation in the range  and  + d is given by the relation 

𝐸𝜆 𝑑𝜆 =  𝐶1 𝜆− 5𝑓(𝜆, 𝑇) 

Or                𝑬𝝀 𝒅𝝀 =  𝑪𝟏 𝝀− 𝟓 𝒆−(𝑪𝟐/𝝀𝑻) 𝒅𝝀      ….(1) 

where C1 and C2 are constants. The above relation is called Wien’s distribution law 

of black body radiation spectrum.  

Drawback of Wien’s law :The Wien’s law is applicable only for the short 

wavelength region and for high temperature of the source of radiation. It fails to 

explain the decrease in the energy for longer wavelengths.    
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Raleigh Jeans law 

According to Raleigh and Jeans, the radiation emitted by a particle in the black body 

travels as waves. There are several such waves which undergo reflections from the 

walls of the enclosure. These waves superpose and produce stationary waves. The 

frequencies of vibrations of the system called the modes of vibration per unit volume 

is given by =  
8 𝜋 𝑑𝜆

𝜆4  . 

It is assumed that the law of equipartition of energy is valid here. According to this 

law average energy per mode of vibration is kT, where k is the Boltzmann constant 

and T is the absolute temperature. 

Thus the energy density  within the range  and  + d is given by  

𝑬𝝀 𝒅𝝀 = 
𝟖 𝝅 𝒅𝝀

𝝀𝟒  𝒌𝑻 =   
𝟖 𝝅 𝒌𝑻

𝝀𝟒   𝒅𝝀. This is Raleigh Jeans law for energy distribution. 

As 𝜈 =  
𝑐

𝜆
  implies    𝜆 =  

𝑐

𝜈
    differentiating, d𝜆 =  |

𝑐

𝜈2| 𝑑𝜈. Thus energy density in 

terms of frequency is 𝐸𝜈 𝑑𝜈 =   
8 𝜋𝜈2𝑘𝑇

𝑐3   𝑑𝜈 

Drawback of Raleigh Jeans law :The energy density is 

given by 

 𝑬𝝀 𝒅𝝀 = 
𝟖 𝝅 𝒌𝑻

𝝀𝟒   𝒅𝝀.  For shorter wavelengths, the energy 

increases. As the wavelength tends to zero, the energy 

increases continuously and goes to infinity. This is 

called ultraviolet catastrophe.  This theory agrees for 

longer wavelengths. At shorter wavelengths there is 

disagreement between the experiment and theory.  

Planck’s law of radiation 

The failure of both Wien’s law and Raleigh Jeans law led Max planck to develop a 

theory to explain the black body radiation spectrum. He made the following 

assumptions. 

1 The black body is made up of a large number of oscillating particles (simple 

harmonic oscillators). These particles can vibrate in all possible frequencies. 

2 The oscillators can have only discrete set of energies which is the integral multiple 

of a finite quantum of energy. 
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3 The energy is given by 𝜀 = 𝑛 ℎ𝜈  where  is the frequency of oscillator and h is the 

planck’s constant. n is a integer called quantum number. Thus the energy of an 

oscillator can be only ℎ𝜈, 2ℎ𝜈, 3ℎ𝜈,…….. Thus energy of the oscillator is quantised.       

4 An oscillator emits or absorbs energy discontinuously and not continuously as 

given by electromagnetic theory. The absorption or emission occurs as quantum of 

energy ℎ𝜈 . 

Expression for Average energy of planck’s oscillator – Planck’s law of 

radiation 

Ler N0, N1, N2,……….Nn  be the number of oscillators having energies 0, ℎ𝜈, 2ℎ𝜈, 

3ℎ𝜈,……..n ℎ𝜈  respectively in a body.  

The total number of oscillators is N = N0 + N1 + N2 + ………Nn   ….(1) 

The total energy of the oscillators is 

 E = 𝑁0(0) + 𝑁1 ℎ𝜈 +𝑁2 2 ℎ𝜈, +𝑁3 3 ℎ𝜈 + …….𝑁𝑛 n ℎ𝜈. 

If 𝜀 = ℎ𝜈, then E = 0 + 𝜀 + 2 𝜀 + 3 𝜀 + …….n 𝜀        …..(2) 

The relative probability that an oscillator has energy ℎ𝜈 at temperature T is given by 

Boltzmann factor 𝑒− ℎ𝜈/𝑘𝑇  . Thus according to Boltzmann distribution law, the 

number of oscillators having energy ℎ𝜈 is 

 𝑁1 =  𝑁0 𝑒− ℎ𝜈/𝑘𝑇    

Similarly number of oscillators having energy 𝑛ℎ𝜈 is    𝑁𝑛 =  𝑁0𝑒− 𝑛ℎ𝜈/𝑘𝑇  . 

Thus equation (1) becomes 

 𝑁 =  𝑁0 𝑒−0 ℎ𝜈/𝑘𝑇 + 𝑁0 𝑒− ℎ𝜈/𝑘𝑇 +  𝑁0 𝑒− 2ℎ𝜈/𝑘𝑇 + ⋯ … +  𝑁0 𝑒− 𝑛ℎ𝜈/𝑘𝑇      

𝑁 =  𝑁0(1 + 𝑒− ℎ𝜈/𝑘𝑇 +  𝑒− 2ℎ𝜈/𝑘𝑇 + ⋯ … + 𝑒− 𝑛ℎ𝜈/𝑘𝑇)    

Let  𝑒− ℎ𝜈/𝑘𝑇 = 𝑦 

Then 𝑁 =  𝑁0(1 +  𝑦 + 𝑦2  + ⋯ … +  𝑦𝑛) 

As 1 +  𝑦 + 𝑦2  + ⋯ … +  𝑦𝑛 =  
1

(1−𝑦)
 

Thus 𝑁 =  𝑁0 ×
1

(1−𝑦)
    ….. (3) 

The total energy of the oscillators is  

E = 𝑁0(0) + 𝑁1 ℎ𝜈 +𝑁2 2 ℎ𝜈, +𝑁3 3 ℎ𝜈 + …….𝑁𝑛 n ℎ𝜈. 
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Or  E = 𝑁1  +𝑁2 2  +𝑁3 3  + …….𝑁𝑛 n      where 𝜀 = ℎ𝜈. 

Or E = 𝑁0 𝑒− ℎ𝜈/𝑘𝑇 +  𝑁0 𝑒− 2ℎ𝜈/𝑘𝑇2 + ⋯ … +  𝑁0 𝑒− 𝑛ℎ𝜈/𝑘𝑇n      

E = 𝑁0 (𝑒− ℎ𝜈/𝑘𝑇 +  𝑒− 2ℎ𝜈/𝑘𝑇2 + ⋯ … +  𝑒− 𝑛ℎ𝜈/𝑘𝑇n)     

As 𝑒− ℎ𝜈/𝑘𝑇 = 𝑦,    Thus E = 𝑁0  (𝑦 +  2 𝑦2 + ⋯ … +  ny𝑛 )     

Or  E = 𝑁0 𝑦 (1 +  2 𝑦 + 3𝑦2 … … +  ny𝑛 … . . )     

As 1 +  2 𝑦 + 3𝑦2 … …  =  
1

(1−𝑦)2
,  

Thus E = 𝑁0 𝑦 ×
1

(1−𝑦)2     ……….. (4) 

The average energy of the oscillators is 𝐸̅ =  
𝐸

𝑁
  ……(5) 

substituting for E and N from (4) and (3) in (5) we get 

𝐸̅ =  
𝐸

𝑁
=  𝑁0 𝑦 ×

1

(1 − 𝑦)2
 ×

(1 − 𝑦)

𝑁0
 =

 𝑦

(1 − 𝑦)
  

Thus 𝐸̅ =  
ℎ𝜈 𝑒− ℎ𝜈/𝑘𝑇

(1− 𝑒− ℎ𝜈/𝑘𝑇)
=  

ℎ𝜈

𝑒  ℎ𝜈/𝑘𝑇−1
   

The average energy of an oscillator is 𝑬̅ =  
𝒉𝝂

𝒆 (𝒉𝝂/𝒌𝑻)−𝟏
  and not kT as predicted by the 

classical theory. 

The number of modes of vibration in the frequency range  and  + d is equal to   
8 𝜋𝜈2

𝑐3   𝑑𝜈. Multiplying this relation with the expression for average energy, we get the 

energy density. 

Thus 𝑬𝝂 𝒅𝝂 =   
𝟖 𝝅𝝂𝟐

𝒄𝟑
 

𝒉𝝂

𝒆 (𝒉𝝂/𝒌𝑻)−𝟏
  𝒅𝝂. This is called the planck’s law of radiation. 

This law can be expressed in terms of wavelength as follows, 

As  =  
𝑐

𝜆
 ,     differentiating, d𝜈 =  |

𝑐

𝜆2| 𝑑𝜆  

Thus the energy density of radiation in the wavelength range  and  + d is given 

by 𝐸𝜆 𝑑𝜆 = 
8 𝜋ℎ 

𝑐3
(

𝑐3

𝜆3
)  ×

1

(𝑒  (ℎ𝑐/𝜆𝑘𝑇)−1)
(

𝑐

𝜆2
)  𝑑𝜆 

Or      𝑬𝝀 𝒅𝝀 = 
𝟖 𝝅𝒉𝒄 

𝝀𝟓

𝟏

(𝒆 (𝒉𝒄/𝝀𝒌𝑻)−𝟏)
𝒅𝝀 

This formula agrees well with the experimental observation of black body radiation 

spectrum. 
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To derive Wien’s formula from Planck’s law of radiation 

 When  is very small 𝑒  (ℎ𝑐/𝜆𝑘𝑇)  is very large compared to 1 . 

In the planck’s formula 𝐸𝜆 𝑑𝜆 = 
8 𝜋ℎ𝑐 

𝜆5

1

(𝑒  (ℎ𝑐/𝜆𝑘𝑇)−1)
𝑑𝜆,      1 can be neglected compared 

to 𝑒  (ℎ𝑐/𝜆𝑘𝑇).  

Thus  𝐸𝜆 𝑑𝜆 = 
8 𝜋ℎ𝑐 

𝜆5

1

(𝑒  (ℎ𝑐/𝜆𝑘𝑇))
𝑑𝜆    or 𝐸𝜆 𝑑𝜆 = 

8 𝜋ℎ𝑐 

𝜆5
𝑒− (hc/λkT)𝑑𝜆     

Let 8𝜋ℎ𝑐 =  𝐶1  and 
ℎ𝑐

𝑘
=  𝐶2, Then the above equation can be written as  

𝑬𝝀 𝒅𝝀 = 
𝑪𝟏 

𝝀𝟓
𝒆−(𝑪𝟐/𝛌𝐓)𝑑𝜆   This is the Wien’s law which agrees with the 

experimental results at shorter wavelengths. 

To derive Raleigh Jeans law from Planck’s law of radiation 

For longer wavelengths, i.e. when  is very large, ℎ𝑐/𝜆𝑘𝑇 is small. 

Expanding 𝑒  (
ℎ𝑐

𝜆𝑘𝑇
), we get 𝑒  (

ℎ𝑐

𝜆𝑘𝑇
) = 1 + 

ℎ𝑐

𝜆𝑘𝑇
+ (

ℎ𝑐

𝜆𝑘𝑇
)

2

+  … ….  

Neglecting the higher powers, we get  𝑒  (
ℎ𝑐

𝜆𝑘𝑇
) = 1 +  

ℎ𝑐

𝜆𝑘𝑇
 

From the planck’s law  𝐸𝜆 𝑑𝜆 = 
8 𝜋ℎ𝑐 

𝜆5

1

(𝑒  (ℎ𝑐/𝜆𝑘𝑇)−1)
𝑑𝜆. Putting tha above condition in 

this equation, 

𝐸𝜆 𝑑𝜆 = 
8 𝜋ℎ𝑐 

𝜆5

1

(1+ 
ℎ𝑐

𝜆𝑘𝑇
−1)

𝑑𝜆 =
8 𝜋ℎ𝑐 

𝜆5  
1

ℎ𝑐

𝜆𝑘𝑇

 𝑑𝜆  

Thus 𝐸𝜆 𝑑𝜆 = 
8 𝜋ℎ𝑐 

𝜆5

𝜆𝑘𝑇

ℎ𝑐
𝑑𝜆    Or    𝑬𝝀 𝒅𝝀 = 

𝟖 𝝅𝒌𝑻

𝝀𝟒
𝒅𝝀       

This is the Raleigh Jeans law which agrees well with experimental observation for 

longer wavelengths. 

Radiation pressure 

Electromagnetic waves transport momentum as well as energy. When this 

momentum is absorbed by a surface, pressure is exerted on it. This is referred to as 

radiation pressure.  

Let a photon of energy h moving with the velocity of light c, incident on a surface 

of a body along the normal. From Einstein theory of relativity, E = mc2 the mass of 

the photon is m = E/c2 or m = h/c2 . 
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Thus the momentum of the photon is p = m  c or p = h/c2  c = h/c. 

or =
𝜀

𝑐
 .   

The total momentum incident on the surface along the normal is given by 

  𝑝 =
∑ 𝜀

𝑐
=  

𝐸

𝑐
  .  

If u is the energy density i.e. energy per unit volume, then the total energy incident 

on a surface of area s in unit time along the normal is given by E1 = u s c. 

Thus the energy flux, i.e. radiation per unit area is E = E1/s . 

Thus E = 
𝑢 𝑠 𝑐

𝑠
 = u c. 

The rate of momentum transfer per unit area  𝑝 =  
𝐸

𝑐
=  

𝑢 𝑐

𝑐
= 𝑢. 

As rate of momentum transfer is force and force per unit area is pressure, thus the 

radiation pressure P = u. 

For normal incidence, the radiation pressure is equal to the energy density. 

For diffused radiation, pressure is given by P = u/3. 

Solar constant 

Sun emits radiation continuously in all directions. A large portion of energy is lost 

due to scattering, absorption and reflection during propagation through earth’s 

atmosphere. 

The rate at which solar radiation is received by unit area of a black body placed at 

right angles to the incoming radiation at the mean distance of the earth from the sun 

in the absence of earth’s atmosphere is called solar constant. 

Its value is 1.35kWm-2. It is experimentally determined by a device called 

pyrheliometer.  

Angstrom's Pyrheliometer  

Principle : The solar energy absorbed by one metal strip is balanced or 

compensated by a known electrical energy supplied to another identical 

one.  

Apparatus and working: It consists of two identical thin metal strips made of 

manganin or constantan A and B which are blackened.  

A is exposed to sun’s radiation and B is shielded. A copper-constantan thermocouple 
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is attached with its junctions to the mid-

points of A and B, with a sensitive 

galvanometer G. The junctions are 

electrically insulated and placed so close to 

A and B such that they attain the same 

temperature as A and B.  

When A is exposed to solar radiation, its 

temperature rises and the galvanometer 

will show a deflection. Now, the 

temperature of B is increased by passing a 

current through it. The current is so 

adjusted that the galvanometer deflection 

becomes zero. This means that the rate at 

which A absorbs the heat energy is equal to the rate at which heat is supplied to B.  

If I is the current and V is the potential difference then the electrical energy supplied 

is  VI joules in one second.  

If A is the area of the exposed strip, a its absorption coefficient, S, the incident 

radiation per unit area per second, the radiant energy absorbed is  S a A = V I , or the 

solar constant  𝑺 =  
𝑽 𝑰

𝒂 𝑨
 Wm-2. 

Surface temperature of Sun 

Consider the sun to be a perfect black body of radius R and surface temperature T, 

then the amount of heat radiated by the sun per second is given by 

𝑄 = 4𝜋𝑅2 𝜎 𝑇4     ……(1) 

Where  is the Stefan’s constant. This energy spreads over a surface area 4 r2 where 

r is the mean distance of the earth from the sun. Hence the solar constant  

𝑆 =  
𝑇𝑜𝑡𝑎𝑙 ℎ𝑒𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑

𝑎𝑟𝑒𝑎
         Thus 𝑆 =  

4𝜋𝑅2 𝜎 𝑇4

4 𝑟2 
       or     𝑇4 =  

𝑆

𝜎
 (

𝑟

𝑅
)

2

 

The surface temperature of the sun is given by  𝑻 = [
𝑺

𝝈
 (

𝒓

𝑹
)

𝟐

]
𝟏/𝟒

  

Substituting the following data in the above equation, T can be calculated. 

R = 6.928  108 m,  r = 1.5  1011 m,  = 5.7  10-8 Wm-2K-4 and S = 1.388  103 Wm-2   

The value of T is found as T = 5780 K. This temperature is called black body 

temperature as sun is assumed to be black body or effective temperature of sun. 


