SIXTH SEMESTER

MATHEMATICS - VII

(4 Lectur hours per week +2 hours of problem working classes)

1. Liner Algebra

Vector space - Examples - Properties - Subspaces criterion for a subset to be a subspace - linear combination linear independent and dependent subsets - Basis and dimensions- Standard results - Examples illustrating concepts and results.

Linear transformations - properties - matrix of a linear transformation - change of basis - range and kernel - rank and nullity - Rank - Nullity theorem - Non-singular linear transformations.

Eigenvalues and Eigenvectors of a linear transformation Interpretation in terms of matrices - Examples illustrating the concepts.
(18 Lecture hours)
2. Line and Multiple Integrals

Definition of a line integral and basic properties examples on evaluation of line integrals.

Definition of a double integral - its conversion to iterated integrals - evaluation of double integrals by change of order of integration and by change of variables - Computation of plane and surface areas, volume underneath a surface and volume of revolution using double integrals.

Definition of a triple integral and evaluation - change of variables - volume as a triple integral. (15 Lecture hours)

3. Integral Theorems

Line, surface and volume integrals of vector functions Green's theorem in the plane (with proof). Direct consequences of the theorem.

The divergence theorem (with proof) - Direct consequences of the theorem.

The Stokes' theorem (with proof) - Direct consequences of the theorem.
(15 Lecture hours)

4. Calculus of Variations

Variation of a function $f=f\left(x, y, y^{1}\right)$ - variation of the corresponding functional - extremal of a functional variational problem - Euler's equation and its particular forms - Examples - standard problems like geodesics, minimal surface of revolution, hanging chain, Brachistochrone problem -Isoperimetric problems.
(12 Lecture hours)

Books for study / reference :

1. Finkbeiner : An introduction to Matrices and linear Transformations (Freeman and Co.)
2. S.Lipschutz : Linear Algebra (Schaum series)
3. C. Fox: An introduction to the Calculus of variations
(Oxford University Press)
4. I.S. Sokelnikoff : Advanced Calculus (Me Graw Hill)

Suggested distribution of lecture hours :

1. Linear Algebra and Calculus of Variations : 2 hours / week.
2. Line and Multiple Integrals, and Integral Theorems : 2 hours / week.

Format of Question Paper

$\begin{gathered} \text { Questi } \\ \text { on } \\ \text { No. } \end{gathered}$	Topic and No. of subdivisions to be set in the topic	No. of sub divisio n to be answer ed	Marks for each subdivision	Maximum marks for the Question
I	Linear Algebra: Line and Multiple: 7 Integrals: 5 Integrals Theorems: 5 Calculus of Variations : 3 Total: 20 			
		15	2	30
II	Linear Algebra : 6	4	5	20
III	Line and Multiple Integrals :	3	5	15
IV	Integral Theroems : 5	3	5	15
V	Calculus of Variations: 4	2	5	10

Note: All questions are to be answered
Maximum Marks for the paper
Examination Marks :
Internal Assessment Marks : 10
Total Marks : 100

