SIXTH SEMESTER

MATHEMATICS – VII

(4 Lectur hours per week + 2 hours of problem working classes)

1. Liner Algebra

Vector space – Examples – Properties – Subspaces – criterion for a subset to be a subspace – linear combination – linear independent and dependent subsets – Basis and dimensions– Standard results – Examples illustrating concepts and results.

Linear transformations – properties – matrix of a linear transformation – change of basis – range and kernel – rank and nullity – Rank – Nullity theorem – Non-singular linear transformations.

Eigenvalues and Eigenvectors of a linear transformation – Interpretation in terms of matrices – Examples illustrating the concepts. (18 Lecture hours)

2. Line and Multiple Integrals

Definition of a line integral and basic properties – examples on evaluation of line integrals.

Definition of a double integral – its conversion to iterated integrals – evaluation of double integrals by change of order of integration and by change of variables – Computation of plane and surface areas, volume underneath a surface and volume of revolution using double integrals.

Definition of a triple integral and evaluation – change of variables – volume as a triple integral. (15 Lecture hours)

3. Integral Theorems

Line, surface and volume integrals of vector functions – Green's theorem in the plane (with proof). Direct consequences of the theorem.

The divergence theorem (with proof) – Direct consequences of the theorem.

The Stokes' theorem (with proof) – Direct consequences of the theorem. (15 Lecture hours)

4. Calculus of Variations

Variation of a function $f = f(x, y, y^1)$ – variation of the corresponding functional – extremal of a functional – variational problem – Euler's equation and its particular forms – Examples – standard problems like geodesics, minimal surface of revolution, hanging chain, Brachistochrone problem –Isoperimetric problems. (12 Lecture hours)

Books for study / reference :

- 1. Finkbeiner : An introduction to Matrices and linear Transformations (Freeman and Co.)
- 2. S.Lipschutz : Linear Algebra (Schaum series)
- 3. C. Fox : An introduction to the Calculus of variations (Oxford University Press)
- 4. I.S. Sokelnikoff : Advanced Calculus (Me Graw Hill)

Suggested distribution of lecture hours :

- 1. Linear Algebra and Calculus of Variations : 2 hours / week.
- 2. Line and Multiple Integrals, and Integral Theorems : 2 hours / week.

Format of Question Paper				
Questi	Topic and No. of	No. of	Marks for	Maximum
on	subdivisions to be set in the	sub	each sub-	marks for
No.	topic	divisio	division	the Question
		n to be		
		answer		
		ed		
Ι	Linear Algebra:			
	Line and Multiple: 7			
	Integrals: 5			
	Integrals Theorems: 5			
	Calculus of Variations : 3			
	Total: 20			
		15	2	30
II	Linear Algebra : 6	4	5	20
III	Line and Multiple	3	5	15
	Integrals : 5			
IV	Integral Theroems : 5	3	5	15
V	Calculus of Variations: 4	2	5	10

Note : All questions are to be answered
Maximum Marks for the paper
Examination Marks :90
10
10
Total Marks :Internal Assessment Marks :10
100