II B. Sc. Mathematics

III Semister, MODEL PAPER - I

I. Answer any FIFTEEN question :-

$$
(2 \times 15=30)
$$

1. Find the order of each elements of the Group $\{1,-1, i,-i\}$ w.r.t. multiplication
2. Show that every cyclic group is abelian.
3. Show that the multiplicative group $\mathrm{G}=\left\{1, \mathrm{w}, \mathrm{w}^{2}\right\}$ is cyclic
4. Find the number of generators of cyclic group of order 60
5. Write all the left cosets of $\mathrm{H}=\{0,4,8\}$ the subgroup of the additive group of integers modulo 12.
6. Prove that a finite group of prime order does not have proper sub groups.
7. Define convergent and divergent of a sequence.
8. 'Every convergent sequence is bounded' Give an example.
9. Verify cauchy's criterion for the sequence $\left\{\frac{2 n-3}{4 n+5}\right\}$
10. Discuss the convergence of $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+----\infty$
11. State D' Alembert's Ratio test.
12. Prove that $\sum\left(\frac{n+1}{n}\right)^{2 n^{2}}$ is divergent.
13. Discuss the convergence of $\mathrm{x}-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+--\infty, \mathrm{x}<1$.
14. Find the summation of $\sum \frac{1}{(2 n)!}$
15. Prove that $\underset{x \rightarrow 0}{L t}\left(\frac{x^{2}+5 x+3}{x^{2}+x+2}\right)^{x}=e^{4}$
16. Give an example for a function which is continuous but not differentiable
17. Show that Sinx. $\log \operatorname{Sin} x$ satisfies all the conditions of Rolle's Theorem. in $\left[0, \frac{\pi}{2}\right]$
18. Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}}\left(\frac{a^{x}+b^{x}+c^{x}}{3}\right)^{1 / x}$
19. Calculate a_{0} in the Fourier Series expansion of $\mathrm{e}^{-\mathrm{x}}$ in ($-1,1$).
20. If $\mathrm{f}(\mathrm{x})= \begin{cases}0 & \text { for }-2<x<0 \\ 1 & \text { for } 0<x<2\end{cases}$

Find the Fourier coefficient a_{n} in the Fourier Series.
II Answer any three of the following :-
($3 \times 5=15$)

1. Define order of a group. Show that the order of any power of an element of a group cannot exceed the order of the element.
2. In a group, if $\mathrm{ba}=\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{m}}$ prove that the same order.
3. Prove that in a cyclic group $\mathrm{G}=\langle a\rangle$ of order $\mathrm{K}, \mathrm{a}^{\mathrm{m}}=\mathrm{a}^{\mathrm{n}}$ $(\mathrm{m} \neq \mathrm{n})$ then $\mathrm{m} \equiv \mathrm{n}(\bmod K)$ and conversely.
4. Prove that any two right cosets of a sub group H of a group are either disjoint or identical.
5. In a group $\mathrm{G}, \mathrm{a}^{5}=\mathrm{e}$ and $\mathrm{b}^{2}=\mathrm{aba} \mathrm{a}^{-1}$ prove that $\mathrm{b}^{31}=\mathrm{e}$

III Answer any two of the following:-

1. Prove that $\left\{\mathrm{n}^{1 / n}\right\}$ is convergent.
2. Show that the sequence $\left\{x_{n}\right\}$ defined by $x_{1}=\sqrt{5}$ and $\mathrm{x}_{\mathrm{n}+1}=\sqrt{5+x_{n}}$ converges to the +ve root of the equation $\mathrm{x}^{2}-\mathrm{x}-5=0$.
3. When $\underset{n \rightarrow \infty}{\operatorname{Lt}} \frac{3 n-4}{5 n+7}=\frac{3}{5}, \in=\frac{1}{10}$ find the corresponding N .

IV Answer any three of the following :
$(3 \times 5=15)$

1. Discuss the convergence of the series $\sum_{1}^{\infty} \frac{1}{n^{p}}$
2. Show that $\frac{5}{1.2 .3}+\frac{7}{3.4 .5}+\frac{9}{5.6 .7}+--\infty$ is convergent.
3. Discuss the convergence of the series

$$
\frac{x}{2 \sqrt{3}}+\frac{x^{2}}{3 \sqrt{4}}+\frac{x^{3}}{4 \sqrt{5}}+--\infty
$$

4. Find sum of $\frac{1}{1.2 .3}+\frac{1}{3.4 .5}+\frac{1}{5.6 .7}+--\infty$
5. If $\mathrm{S}=\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 \cdot 12}+--\infty$ prove that $16 \mathrm{~S}^{2}-56 \mathrm{~S}-79=0$

V Answer any two of the following
$(2 \times 5=10)$

1. Discuss the type of discontinuity of

$$
\mathrm{f}(\mathrm{x})= \begin{cases}\frac{x^{2}-4 x+3}{x^{2}-5 x+4} & x \neq 1 \\ 3 / 2 & x=1\end{cases}
$$

2. State and prove Rolle's Theorem.
3. Verify Lagranges Mean value theorem for
$F(x) \operatorname{Sin} x+\cot x$ in $\left[0, \frac{\pi}{2}\right]$
4. Show that $\log \sin (\mathrm{x}+\mathrm{h})=\log \sin \mathrm{x}+\mathrm{h} \cot \mathrm{x}-\frac{h^{2}}{2} \operatorname{cosec}^{2} \mathrm{x}+--$

VI Answer any Two of the following :- $\quad(2 \times 5=10)$

1. Find the Fourier series for $\mathrm{f}(\mathrm{x})=|x|$ in $(-1,1)$
2. find the half - range $\operatorname{Sin} x$ series for $f(x)=\pi x-x^{2}$ in $0<x<\pi$
3. Find the half - range cosine series for $f(x)(x-1)^{2}$ in $0<x<1$

MODEL PAPER II

I Answer any FIFTEEN questions :-
$(2 \times 15=30)$

1. If $0(\mathrm{a})=\mathrm{m}, 0(\mathrm{~b})=\mathrm{n} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G}$ an abelian group, $(\mathrm{m}, \mathrm{n})=1$ prove that $0(\mathrm{ab})=\mathrm{mn}$.
2. Define a cyclic group.
3. If a is the generator of a cyclic group then show that a^{-1} is also a generator.
4. Show that $G=\left\{2^{n} \mid n \in z\right\}$ w.r.t usual multiplication is a Cyclic group.
5. Define coset of a group
6. Find the idex of the sub-group $H=\{0,3\}$ in the group $\left\langle Z_{6}+\right\rangle$
7. Show that a monotonic decreasing sequence bounded below is convergent.
8. Give an example for the statement sum of the two divergent sequences is divergent
9. Prove that the sequences $\left\{x_{n}\right\}$ whose $n^{\text {th }}$ term is

$$
\mathrm{x}_{\mathrm{n}}=\frac{2 n^{2}+3 n+5}{n+3} \cdot \sin \frac{\pi}{n} \text { is convergent. }
$$

9. Discuss the convergence of $\sum(\log n)^{-n}$
10. State Raabe's test for a positive series.
11. Discuss the convergence of $\sum \frac{2.4 .6 \ldots \ldots . .(2 n)}{3.5 .7 \ldots \ldots . .(2 n+1)}$
12. Show that $1-\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}-\frac{1}{\sqrt[3]{4}}+--$ is convergent.
13. Find the sum of $1+\frac{3}{1!} \frac{1}{3}+\frac{3.5}{2!}\left(\frac{1}{3}\right)^{2}+\cdots-\infty$
14. If α and β are the roots of $\dot{x}^{\dot{2}}-a x+b=0$ prove that
(i) $\{\sqrt{n}(\sqrt{n+4}-\sqrt{n})\}$
(ii) $\{1+\cos n \pi\}$

$$
\operatorname{Lt}_{x \rightarrow \alpha} \frac{e^{\left(x^{2}-a x+b\right)}-1}{x-\alpha}=\alpha-\beta
$$

15. Show that $\mathrm{f}(\mathrm{x})=e^{-\mathrm{x} \mid}$ is not differentiable at $\mathrm{x}=0$.
16. Verify Lagranges Mean value theorem for

$$
f(x)=(x-1)(x-2) \text { in }[0,4]
$$

18. State Taylors Expansion for a differentiable function
19. Obtain the half - range sine series for $f(x)=x$ over the interval ($0, \pi$).
20. Obtain the Fourier Series for the function $f(x)=x^{2}$ over the interval $(-\pi, \pi)$.

II Answer any three of the following :-
$(3 \times 5=15)$

1. Define center of a group. Prove that center of a group Is a sub-group of G.
2. Show that $\left\{I_{2}\left[\begin{array}{ll}-1 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{c}0-1 \\ 1-1\end{array}\right]\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{c}1-1 \\ 0-0\end{array}\right]\left[\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right]\right\}$ It forms a cyclic group.
3. Prove that there is a one - to one correspondence between the set of all right cosets and the set of all left cosets of a sub group of a group.
4. State and prove Lagranges theorem for a finite group.
5. Find all the district cosets of the sub group $\mathrm{H}=\{1,3,9\}$ of the group $G=\{1,2,3,---12\}$ w.r.t $x \bmod 13$.

III Aanswer any two of the following :- $\quad(2 \times 5=10)$

1. If $\left\{a_{n}\right\} \rightarrow a$ and $\left\{b_{n}\right\} \rightarrow b$, prove that $\left\{a_{n}+b_{n}\right\} \rightarrow a+b$.
2. Show that the sequence $\left\{x^{n}\right\}$ where $x_{n}=\frac{3 n+4}{2 n+1}$ is
(i) monotonic decreasing (ii) bounded (iii) tends to the lt $\frac{3}{2}$
3. Discuss the convergence of the following sequence

IV Answer any three of the following :

1. State and prove D' Alembert's test of convergenc
2. Discuss and convergence of
a) $\sum \frac{1}{n} \tan \frac{1}{n}$
b) $\frac{1}{1^{p}}+\frac{1}{3^{p}}+\frac{1}{5^{p}}+---$
3. Discuss the convergence of $x+\frac{x^{2}}{\sqrt{2}}+\frac{x^{3}}{\sqrt{4}}-+---\infty$
4. Sum the series $\frac{3^{2}}{1!}+\frac{5^{2}}{3!} \frac{7^{2}}{5!}+---$
5. Prove that $1+\frac{1}{4}\left(\frac{1}{2}+\frac{1}{3}\right)+\frac{1}{4^{2}}\left(\frac{1}{4}+\frac{1}{5}\right)--\infty=\frac{1}{2} \log 12$

V Answer any two of the following :-

1. A function which is continuous in a closed interval attain its bounds
2. Verify Cauchy's Mean Value theorem for

$$
\mathrm{f}(\mathrm{x})=\sqrt{x} \text { and } g(x)=\frac{1}{\sqrt{x}} \quad \text { in }[\mathrm{a}, \mathrm{~b}]
$$

1. Find the Maclaurins expansion of $\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}$.
2. Find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that $\operatorname{Lim}_{x \rightarrow 0} \frac{a x e^{x}-b \log (1+x)+c x e^{-x}}{x^{2} \sin x}=2$

VI Answer any two of the following : - $\quad(2 \times 5=10)$

1. Find the fourier for $f(x)=x \sin x, 0<x<2 \pi$
2. Find the half range cosine series for

$$
f(x)=\left\{\begin{array}{cc}
x & 0<x<\frac{a}{2} \\
a-x & \frac{a}{2}<x<a
\end{array}\right.
$$

3. Find the half range sine series for
$f(x)=2 x-1$ in the interval $(0,1)$
V. Answer any two of the following:-
($2 \times 5=10$)
4. A function which is continuous in a closed interval attain its bounds.
5. Verify Cauchy's Mean Value theorem for

$$
f(x)=\sqrt{x} \text { and } g(x)=\frac{1}{\sqrt{x}} \quad \text { in }[\mathrm{a}, \mathrm{~b}] .
$$

3. Find the Maclaurins expansion of $\mathrm{e}^{\mathrm{x}} \cos \mathrm{x}$.
4. Find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that

$$
\operatorname{Lim}_{x \rightarrow 0} \frac{a x e^{x}-b \log (1+x)+c x e^{-x}}{x^{2} \sin x}=2
$$

VI Answser any two of the following :-

1. Find the fourier series for $f(x)=x \sin x$,
2. Find the half range cosine series for

$$
f(x)=\left\{\begin{array}{cc}
x & 0<x<\frac{a}{2} \\
a-x & \frac{a}{2}<x<a .
\end{array}\right.
$$

3. Find the half range sine series for $f(x)=2 x-1$ in the interval $(0,1)$.
