Model Paper - I

Mathematics VII

I Answer any 15 questions: $(15 \times 2 = 30)$

- 1. Let V (F) be a vector space over a field F then prove that c. 0 = 0 where $c \in F$ and $0 \in V$.
- 2. Define a subspace of a vector space.
- 3. Prove that the set $s = \{(1,2,1), (2,1,1), (1,-1,2)\}$ is linearly independent.
- 4. Show that $3x^2 + x + 5$ polynomial is the linear span of the set $s = \{x^3, x^2 + 2x, x^2 + 2, 1 x\}$
- 5. Define $T: V_2(R) \to V_2(R)$ by $T(x, y) = (x \cos \theta y \sin \theta, x \sin \theta + y \cos \theta)$. Verify whether T is a linear transformation.
- 6. Find the matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x + 3y, y + 2z) w.r.t standard bases.
- 7. Let $T: V_2(R) \rightarrow V_2(R)$ be defined by T(1,0) = (1,2) T(0,1) = (4,3). Find all eigen values of T.
- 8. Evaluate $\int (3x-2y)dx + (y+2z)dy x^2dz$ where x = t, $y = 2t^2$, $z = 3t^3$ varying from 0 to 1.
- 9. Prove that $\int_{0}^{\pi/2} \int_{0}^{a\cos\theta} r^2 d\theta dr = \frac{2a^3}{9}$
- 10. Evaluate $\iint_D xy \, dx \, dy$ over the rectangle bounded by x = 2, x = 5, y = 1 and y = 2.
- 11. Prove that $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2}y \, z \, dz \, dy \, dx = 1$.

440 College Mathematics VII

- 12. Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ by double integration.
- 13. State Stokes theorem in a plane.
- 14. Using Green's theorem evaluate $\int (x^2 y \cos x + 2xy \sin x y^2 e^x) dx + (x^2 \sin x 2y e^x) dy$ around the hypocycloid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 15. Using Divergence theorem, show that $(axi + byj + (czk).\hat{n} ds = \frac{4}{3}\pi(a+b+c) \text{ where S is the surface of the sphere } x^2 + y^2 + z^2 = 1.$

16. If
$$\overline{f}(t) = (3t^2 - t)i + (2 - 6t)\hat{j} - 4tk$$
, find $\int_{2}^{4} \overline{f}(t) dt$

- 17. The acceleration of a particle at t is given by $4\cos 2t\hat{i} 8\sin 2t\hat{j} + 16t\hat{k}$, find its displacement at any time t.
- 18. Show that the Euler's equation for the extremum of $\int_{x_1}^{x_2} (y^2 + y'^2 + 2ye^x) dx \text{ reduce to } y'' y = e^x.$
- 19. State the necessary condition for $I = \int_{x_1}^{x_2} f(x, y, y') dx$ to be an extremum.
- 20. Obtain the general solution of the extremal problem $\int_{a}^{b} \frac{(y')^{2}}{x^{3}} dx$ when b > a > 0.

II Answer any four of the following: $(4 \times 5 = 20)$

1. Show that the set $V = \left\{ \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} | x, y \in R \right\}$ is a vector space over the field of reals R under + and \times of matrices.

 $a\alpha + b\beta \in w$

3. Find the dimension and basis of the subspace spanned by (2,4,2)(1,-1,0)(1,2,1) and (0,3,1) in $V_3(R)$.

4. State and prove Rank – Nullity theorem of a linear transformation

5. Find a linear transformation $T:V_2(R) \to V_2(R)$ such that T(1,2) = (3,0) and T(2,1) = (1,2)

6. Find the Eigen space of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (2x + y, y - z, 2y + 4z).

III. Answer any three of the following: $(3 \times 5 = 15)$

1. Evaluate $\int (x+2y)dx + (4-2x)dy$ around the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ in the anti clockwise.

2. If C is a curve leading from (0,0,1) to $\left(1,\frac{\pi}{4},2\right)$ show that

$$\int 2xyx^2 dx + (x^2 z^2 + Z\cos yz) dy + (2x^2 yz + y\cos yz) dz = 1 + \pi$$

3. Evaluate $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$ by changing the order of integration.

442

College Mathematics VII

OR

Evaluate $\iiint dxdydz$ taken through the region defined by

$$x, y, z \ge 0, \frac{x}{a} + \frac{y}{b} + \frac{z}{c} \le 1$$

4. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-z^{2}}} \int_{0}^{\sqrt{a^{2}-y^{2}-z^{2}}} x \, dx \, dy \, dz$

OR

Find the volume of the tetrahedran bounded by the co-ordinates planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

IV Answer any three of the following: - $(3 \times 5 = 15)$

1. If $\int_{c} F.dr$ from (0,0) to (1,1) along the paths C a) The parabola $y = x^2$ b) the line from (0,0) to (1,0) and then to (1,1,)

2. Evaluate $\iiint_C \phi \, dv$ where $\phi = 45x^2y$ and C is the close region bounded by the planes 4x + 2y + z = 8 x = 0, y = 0, z = 0.

3. State and prove Green's theorem in a plane.

4. Evaluate $\iint_{S} \left[(x+z)\hat{i} + (y+z)\hat{j} + (x+y)\hat{k} \right] \hat{n} ds$ where S is the surface pf the sphere $x^2 + y^2 + z^2 = 4$ by using Gauss – divergence theorem.

444

5. Evaluate $\int_{c} (xy dx + xy^{2} dy)$ by Stokes theorem where C is the square in xy – plane with vertice (1,0),(-1,0),(0,1) and (0,-1).

V Answer any two of the following: $(2 \times 5 = 10)$

- 1. Show that the curve passing through (1,0) and (2,1) with $\int_{1}^{2} \sqrt{\frac{1+(y')^{2}}{x^{2}}} dx$ is a circle.
- 2. Find the extremum of the functional $\int_{x_1}^{x_2} \left[y^2 + (y')^2 + 2y \sin 2x \right] dx$
- 3. Find the geodesics on a right circular cone.
- 4. Find the external of the functional $\int_{0}^{1} \left[x^{2} + \lambda y^{2} (y')^{2} \right] dx$ under the conditions (0,0)(1,0) and subject to the constraint $\int_{0}^{1} y^{2} dx = 2.$

Model Paper II Mathematics VII

- I. Answer any 15 questions: $(15 \times 2 = 30)$
 - 1. Define a vector space over the field $(F + \square)$

- 2. Prove that the subset $w = \{(x, y, z) | x 3y + 4z = 0\}$ of the vector space \mathbb{R}^3 os a subspace of \mathbb{R}^3 .
- 3. Show that (2,-1,-8) vector can be expressed as a linear combination of the vectors (1,2,1),(1,1,-1),(4,5,-2).
- 4. Show that the vectors (1,0,-1)(1,2,1)(0,-3,2) form a basis of $V_3(R)$.
- 5. Verify whether $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x+3y, y+z+1) is a linear transformation.
- 6. Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x, y) = (x + y, y + z, z + x).
- 7. Find the eigen values of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(e_1) = (4,0,1)T(e_2) = (-2,1,0)T(e_3) = (-2,0,1)$
- 8. Evaluate $\int (x+y)dx + x^2ydy$ along the straight line y = 3x from (0,0) to (3,9).
- 9. Prove that $\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{(1-x^2)(1-y^2)}} = \frac{\pi^2}{4}.$
- 10. Evaluate $\iint dx \, dy$ over the area bounded by x = 0, y = 0, $x^2 + y^2 = 1$ and $y = \frac{1}{2}$.
- 11. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x+y-z) dy dx$ dz.
- 12. Evaluate $\int_{0}^{2a} \int_{0}^{b} (x^2 + y^2) dy dx$ by changing into polar coordinates.
- 13. State Divergence theorem in a plane.

- 14. Using Green's theorem find the area of the circle $x^2 + y^2 = a^2$
- 15. Using stokes theorem prove that $\iint \vec{r} \cdot d\vec{r} = 0$
- 16. If $\vec{r} = 5t^2 \hat{i} + t \hat{j} t^3 k$ then prove that $\int_{1}^{2} \vec{r} \times \frac{d^2 \vec{r}}{dt^2} dt = -14 \hat{i} + 75 \hat{j} 15 k.$
- 17. If $\vec{F} = y \hat{i} x \hat{j}$, evaluate $\int_{c} \vec{F} d\vec{r}$ along the parabola $y = x^{2}$ from (0.0) to (1.1)
- 18. Prove that the Euler's equation for the extremum of $\int_{1}^{2} \left[x^{2} (y')^{2} + 2y(x+y) \right] dx = 0 \text{ is } x^{2} y'' + 2xy' 2y = x$
- 19. Prove that the extremal of $\int_{0}^{1} \frac{(y')^{2}}{x} dx$ with y(0) = 0, y(2) = 1 is a parabola.
- 20. Briefly explain Isoperimetric problems.

II Answer any four of the following: $(4 \times 5 = 20)$

- 1. Show that $V = \left\{ a + b\sqrt{2} \,\middle|\, a, b \in Q \right\}$ where Q is the field of all rationals forms a vector space under usual + and \times .
- 2. Prove that A non empty subset w of a vector space V is a subspace of V iff (i) $\forall \alpha, \beta \in w \Rightarrow \alpha + \beta \in w$ (ii) $c \in F, \alpha \in w \Rightarrow c\alpha \in w$.
- 3. Define basis and dimension of a vector space. Find the basis and dimension of subspace of $V_3(R)$ spanned by $\{(1,-2,3), (1,-34), (-1,1,-2)\}$.

- 4. Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x,y) = (2y-x,y,3y-3x) relative to bases $B_1 = \{(1,1),(-1,1)\}$ and $B_2 = \{(1,1,1),(1,-1,1)(0,0,1)\}$
- 5. If $T:V_3(R) \to V_4(R)$ defined by $T(e_1) = (0,1,0,2)$ $T(e_2) = (0,1,1,0), T(e_3) = (0,1,-1,4)$. Find the range space null space, rank and nullity of T and verify the rank and nullity theorem.
- 6. Find the eigen values and eigen vectors of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by T(x, y, z) = (x + 3z, 2x + y z, x y + z)

III Answer any three of the following: $(3 \times 5 = 15)$

- 1. Prove that the value of the integral $\int_{c} (x^{2} y^{2}) dx + x^{3} y dy = 56\pi \text{ where c is the semi circle}$ with centre (0, 4) and radius 2 units.
- 2. Evaluate $\int_{c} F . dr$ where $\overline{F} = e^{x} \sin y \hat{i} + e^{x} \cos y \hat{j}$ and c is the rectangle with vertices $(0,0)(1,0)(1,\frac{\pi}{2})(0,\frac{\pi}{2})$.
- 3. Prove that $\iint_{R} xy(x+y) dx dy = \frac{3}{56} \text{ over the region R}$ between $y = x^2$ and y = x.
- 4. Evaluate $\iiint dxdydz$ where v is the volume of the tetrahedron whose vertices are (0, 0, 0), (0, 1, 0) 91, 0, 0

Evaluate
$$\int_{0}^{\pi/2} \int_{0}^{a\sin\theta} \int_{0}^{(a^2-r^2)/a} rdz.dr.d\theta$$

5. Using triple integral, find the volume of the sphere.

IV Answer any three of the following: $(3 \times 5 = 15)$

1. Find the work done in moving a particle once round the circle $x^2 + y^2 = 4$ in a force field

$$F = (2x - y + 2z)\hat{i} + (x + y - z)\hat{j} + (3x - 2y - 5z)k.$$

- 2. Evaluate $\int (x^2 2xy)dx + (x^2y + 3)dy$ using Green's theorem around the curve $y^2 = 8x$ and x = 2.
- 3. Verify Gauss divergence theorem for $F = y\hat{i} + x\hat{j} + z^2k$ over the cylindrical region S bounded by $x^2 + y^2 = a^2$, z = 0 and z = h.
- 4. Verify Stokes theorem for $\overline{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$ taken round the rectangle bounded by $x = \pm a$, y = 0, y = b
- 5. Show that $\int_{(0,1)}^{(1,2)} (x^2 + y^2) dx + 2xy dy$ is independent of the path and find its value.

V Answer any two of the following: $(2 \times 5 = 10)$

- 1. Show that the external value of $\int_{0}^{1} \left[x + y + \left(y^{1} \right)^{2} \right] dx$ with $y(0) = 1, y(1) = 2 \text{ is } 4y = x^{2} + 3x + 4.$
- 2. If a cable hangs freely under gravity from two fixed points then show that the shape of the curve is a catenary.
- 3. Show that the geodesic of a sphere of radius r and its great circles.

4. Find the extremal of the functional $\int_{0}^{\pi} \left[(y^{1})^{2} - y^{2} \right] dx$ under the condition (0, 0) and $(\pi, 1)$ and subjected to the constraint $\int_{0}^{\pi} y dx = 1$.

MODEL PAPER III MATHEMTICS VII

I Answer any 15 questions:-

448

 $(15 \times 2 = 30)$

- 1. Let V(F) be a vector space over a field F. Prove that $c(\alpha \beta) = c\alpha c\beta \ \forall c \in F \text{ and } \alpha, \beta \in V$.
- 2. What are the criterion for a subset to be a subspace.
- 3. Define Linear combination on a vector space V(F)
- 4. Determine whether the set $S = \{(2, 1) (1, -2) (1, 0)\}$ is a basis of R^2 .
- 5. Prove that if $T: v_3(R) \rightarrow v_2(R)$ is defined by T(x, y, z) = (x + z, y x + z) is a linear transformation.
- 6. If T: $v_3(R) \rightarrow v_2(R)$ defined by T(x, y, z) = (y x, y z). Find matrix of T.
- 7. Find the eigen values of Linear transformation $T(e_1)=(1,4)$, $T(e_2)=(2,3)$ where $T:v_2(R)\to v_2(R)$.
- 8. Evaluate $\int_{c} (3x^2 + 6y)dx 14yzdz + 20x^2z dz$ where c is the curve x = t, $y = t^2$, $z = t^3$ from the origin to (1, 1, 1)
- 9. Prove that $\int_{0}^{1} \int_{0}^{1-x} (x^2 + y^2) dx dy = \frac{1}{6}.$
- 10. Evaluate $\iint_D xy \, dx \, dy$ where D is the region bounded by x = 0, y = 2 and $x^2 = 2y$.

- 11. Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} (x + y + z) dz dy dx$.
- 12. By changing into polar coordinates evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$
- 13. State Greens theorem in a plane.
- 14. Using Divergence theorem, prove that $\iint_{s} \hat{r} \cdot \hat{n} ds = 3v$ where s is the closed surface.
- 15. Using stokes theorem, Show that $\iint_C (yzdx + xzdy + xydz) = 0$.
- 16. The acceleration of a particle at any time t is given by $\vec{a} = \vec{e} \cdot \hat{i} 6(t+1)\hat{j} + 3\sin t \hat{k}$. Find its velocity when t = 0 $\vec{v} = 0$.
- 17. If $\vec{f} = \sin u \hat{i} + \cos u \hat{j} + u^2 k$ find $\int \vec{f} \circ \frac{d\vec{f}}{du} du$
- 18. Obtain the Euler's equation to the external of

$$\int_{x_{1}}^{x_{2}} \left[y^{2} + (xy')^{2} + ye^{x} \right] dx$$

- 19. Show that the extremal of $\int_{x_{1}}^{x_{2}} \sqrt{1+(y')^{2}} dx$
- 20. Show that the geodesic on a plane is a straight line.

II Answer any four of the following: $(4 \times 5 = 20)$

- 1. Show that the set of all matrices of the order $n \times n$ with their elements as real numbers is a vector space over the field $(R+,\cdot)$ with the usual operations of matrices.
- 2. Show that the intersection of any two subspaces of a vector space V over a field F is a subspace of V. Also show that union of two subspaces need not be a subspace.

- 3. Find the dimension and basis of the subspace spanned by (1,3,2,4), (1,5,-2,4)(1,2,3,4)(1,6,-3,4) in $V_4(R)$
- 4. Find the linear transformation for the matrix $A = \begin{bmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 3 \end{bmatrix}$ w.r.t $B_1 = \{(1,2,0), (0,-1,0)(1,-1,1)\}$ and $B_2 \{(1,0), (2,-1)\}$
- 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y, x y, 2x + z). Verify the rank and nullity theorem.
- 6. Find the Eigen space of the L.T $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (3x, 2y + z, -5y 2z)

III Answer any three of the following: $(3 \times 5 = 15)$

- 1. Evaluate $\int (x+y)dx + (y-x)dy$
 - (i) along the parabola $y^2 = x$ from (1,1) to (4,2)
 - (ii) along $x = 2t^2 + t + 1$, $y = t^2 + 1$ at t = 1
- 2. Evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy$ by changing the order of integration.
- 3. Evaluate $\iiint xyz \ dx \, dy \, dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$

OR

Evaluate
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{dzdydx}{(1+x+y+z)^3}$$

- 4. By changing into polar coordinates evaluate $\iint_{R} \sqrt{x^2 + y^2} dx dy$ where R is the circle $x^2 + y^2 = a^2$
- 5. Find the surface area of the sphere $x^2 + y^2 + z^2 = a^2$

IV Answer any three of the following: $(3 \times 5 = 15)$

- 1. If $\overline{F} = (2xy^3 y^2 \cos x)\hat{i} + (1 2xy \sin x + 3x^2y^2)\hat{j}$ find the value of $\int_c F.dr$ along the curve C given by $2x = \pi y^2$ from (0,0) to $(\pi/2,1)$.
- 2. Evaluate $\iint F \cdot \hat{n} ds$ where $F = y\hat{i} + 2x\hat{j} z\hat{k}$ in the surface of the plane 2x + y = 6 in the first octant cut off by plane z = 4.
- 3. Verify Green's theorem for $\iint_{c} (3x^{2} 8y^{2}) dx + (4y 6xy) dy$ Where C is the boundary of the region $y = \sqrt{x}$, $y = x^{2}$.

- 4. Evaluate $\iint_{s} F \cdot \hat{n} \, ds$ where $F = 4xy\hat{i} + yz\hat{j} xzk$ and S is the Surface of the cube bounded by the planes $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$.
- 5. Verify stokes theorem for the function $F = y^2 \hat{i} + xy \hat{j} xz \hat{k}$ Where S is the hemisphere $x^2 + y^2 + z^2 = a^2$, $x \ge 0$.

V. Answer any two of the following :- $(2 \times 5 = 10)$

- 1. Show that the extremal value of $\int_{1}^{2} x^{2} (y')^{2} dx \text{ with } y(0) = 1,$ $y(2) = 1 \text{ is } y = \frac{4}{3} \left(1 \frac{1}{x^{2}} \right).$
- 2. Prove that the extremal of $\int_{x_1}^{x_2} y \sqrt{1 + (y')^2} dx$ is the catenary $y = a \cosh(ax + b)$.
- 3. Show that the shortest distance between two points in a plane is along the straight line joining them
- 4. Find the extremal of the function $\int_{0}^{1} \left[(y')^{2} + x^{2} + \lambda y \right] dx$ under the condition y(0) = 0, y(1) = 0 and subjected to the constraint $\int_{0}^{1} y dx = \frac{1}{6}$.