Department of Mathematics

PROGRAMME OUTCOME, PROGRAMME SPECIFIC OUTCOME, LEARNING OUTCOME AND COURSE OUTCOME

$\left.\left.\begin{array}{|l|l|}\hline \text { B.Sc.(Mathematics) } \\ \hline \text { PROGRAMME } & \begin{array}{l}\text { Formulate and develop mathematical arguments in a logical } \\ \text { manner. Also when there is a need for information, the student } \\ \text { will be able to identify, locate, evaluate, and effectively use that } \\ \text { information for handling issues or solving problems at hand. } \\ \text { Acquire good knowledge and understanding in advanced } \\ \text { areas of mathematics and its applications. }\end{array} \\ \hline \begin{array}{l}\text { PROGRAMME } \\ \text { SPECIFIC }\end{array} & \begin{array}{l}\text { Will be able to apply critical thinking skills to solve problems } \\ \text { that can be modelled mathematically, to critically interpret } \\ \text { numerical and graphical data, to read and construct }\end{array} \\ \text { mathematical arguments and proofs, to use computer }\end{array}\right\} \begin{array}{l}\text { technology appropriately to solve problems and to promote } \\ \text { understanding, to apply mathematical knowledge to a career } \\ \text { related to mathematical sciences thus cultivating a proper } \\ \text { attitude for higher learning in mathematics. }\end{array}\right\}$

	homogenous functions leading to Euler's theorem. Compute integrals using Reduction formulae and Leibnitz rule.
Mathematics	* Introduced to Free and Open Source Software (FOSS Tools) Practical - I like SCILAB and MAXIMA environment to perform basic mathematical operations and functions. * Learn computations with matrices, solution of linear algebraic systems (both manual and using SCILB) * \quadUnderstands MAXIMA commands for differentiation(ordinary, partial), integration to find nth derivatives, partial derivatives, Jacobians and reduction formulae. * Implement vector forms of a line and plane.
Mathematics-II	* Comprehend the fundamental ideasof Binary operation on a set, Algebraic structures such as Group, Subgroup and their basic properties. * A solid foundation of Calculus -Learn to use Polar coordinates, tangents \& normals, pedal equations, curvature of
plane curves, Asymptotes \& envelopes of plane curves leading	
to the skill of tracing of curves.	
* Develop methods of computing length of an arc, area of	
enclosed by a curve, surface area and volume of revolution of a	
curve using integration.	
$*$ Learn to recognize and develop skill to solve Linear, Bernouli,	
Exact and non-linear differential equations. Learn to find	
Orthogonal trajectories of a given family of curves.	

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { defined on subsets of the real line. Understand the mean value } \\ \text { theorems and their proofs which lead to - the L'Hospital's rule } \\ \text { for finding limits of functions and the Taylor's theorem and it's } \\ \text { applications. }\end{array} \\ \hline \text { Mathematics } & \begin{array}{l}\text { * Develop understanding and verification of Lagrange's } \\ \text { Practical - III } \\ \text { theorem on finite groups and calculation of cosets of a } \\ \text { subgroup of a group using FOSS tools. } \\ \text { * Learn the method of analysing convergence of sequences and } \\ \text { series, summation of series using Maxima. } \\ \text { * Write Scilab/Maxima programs to illustrate continuity, } \\ \text { differentiability of functions, mean value theorems, calculate } \\ \text { limits using L'Hospital's rule. }\end{array} \\ \hline \text { Mathematics-IV Comprehend the important concepts of Normal subgroup, } \\ \text { Quotient group, Homomorphism of groups, proof of FTH, } \\ \text { permutation groups and the Cayley's theorem and it's proof. } \\ \text { * Learn the skill of finding the full \& half range Fourier series } \\ \text { expansion of a given function. } \\ \text { * Develop ability to test continuity and differentiability of } \\ \text { functions of more than one variable and to extend the Taylor's } \\ \text { series expansion for them. Determine the maxima \& minima of } \\ \text { functions of two variables. } \\ \text { * Learn the mathematical tool of Laplace transform and its } \\ \text { properties to solve linear differential equations which govern L- }\end{array}\right\}$

	* Understands the ideas of scalar field and vector field and computation of gradient, divergence, circulation and Laplacian and their geometric and physical interpretations . * Develop basic skills of Numerical Methods: finite differences, interpolation of different data structures, Numerical integration.
Mathematics	* Understand different types of Rings and their verification through maxima programs * Learn calculation of gradient, divergence, curl, Laplacian of scalar and vector fields and their identities using maxima programs. * Use scilab tool to do interpolation and numerical integration.
Mathematics-VI* Develop an understanding and knowledge of basic ideas of 'calculus of variations' such as - functional, variational problem, Euler's equation, Geodesics, Brachistochrone problem and	
Isoperimetric problems.	
* Understand the ideas of Line and Multiple Integrals and	
develop skills to evaluate them and apply them to solve	
geometric problems of finding areas and volumes of surfaces	
and solids.	
* Learn the important Integral theorems -	
Green's theorem, Gauss theorem, Stokes' theorem - and their	
proofs and some problems there on.	

	equations' of first \& second order and application to one dimensional Heat and Wave equations.
Mathematics Practical - VII	* Comprehend through practical calculation(and also using maxima) the important ideas of linear algebra such as span, linear independence, basis, and dimension, matrix of linear transformations and verify rank- nullity theorem . * Solve total and simultaneous differential equations. * Develop skill to solve different types of partial differential equations. * Learn solution of one dimensional wave and heat equations under Dirichlet conditions.
MathematicsVIII	* Compute sums, products, quotients, conjugate, modulus, and argument of complex numbers.Write equation of straight line, circle in complex form - Understand the significance of differentiability of complex functions and be familiar with the Cauchy-Riemann equations and determine whether a given function is analytic. - Define Bilinear transformation, cross ratio, fixed point,Write the bilinear transformation which maps real line to real line, unit circle to unit circle, real line to unit circle. - Find parametrizations of curves, and compute complex line integrals directly.Use Cauchy's integral theorem and formula to compute line integrals. * Learn 'Numerical methods' of solving algebraic and transcendental equations, systems of linear algebraic equations, computing largest eigen value of a square matrix and solution of ordinary differential equation of first by Euler, Taylor and Runge-Kutta methods.
Mathematics Practical - VIII	* Write maxima programs to verify check analyticity of complex functions, use Milne-Thomson method to construct analytic functions, check orthogonality and hormonicity of real and imaginary parts of analytic functions. * Learn the important ideas of bilinear transformations, cross ratios and their preservance under bilinear transformation. * Evaluate integrals using Cauchy's Integral theorem. (using scilab) * Solve using different numerical methods algebraic equations, system of equations. Find largest eigen value .(using scilab) * Solve ODEs using Euler's method and Runge Kutta method (using scilab)

