
 

Chapter 1 
Linear Algebra 

 
 

 In this chapter, we study another algebric structure called the vector 
space , the basis and dimension of  a vector space, linear  
transformation  and Eigen values and Eigen vectors of a linear 
transformation . 
 
1.01 : vector  spaces 
 

Definition :  Let  F be a field and V be a non- empty set.  In V, 
we define the operations of addition and scalar multiplication α β+  

and c α where ,α β  ∈  Vand c ∈  F. Then the set V is called a vector 
space over the field F if the following axioms are satisfield:  

 

1( )V   (V,+) is an Abelian group. 

2( )V  (i) c. ( ) . .c cα β α β+ = +  

         (ii)  ( )1 2 1 2c c c cα α α+ = + } ( Distributive axioms) 

( )3V  ( ) ( )( )1 2 1 2c c c cα α=  

( )4V   1 .  α α=  

, Vα β∀ ∈  and 1 2, , ,c c c F∈    

 
The vector space over the field F is denoted by V (F). The 

elements of F are called scalars and the elements of  V  are called 
vectors. 
 

The identity of the group (V, +) is denoted by 0 and is called 
the zero vector or null vector which is unique. 
 
 Worked  Examples : 

(1) The set of all ordered pairs (x1 , x 2 )  of  the elements of 

the field of real numbers forms a vector space  w.r.t. 
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addition and scalar multiplication defined as                                   
( x1 ,x 2 ) + ( y1 ,y 2 ) = ( x1+ y1, x2 + y2) 

                     c. ( x1, x2) = ( cx1, cx2) 
 
Solution :  Let  V(R) = { (x1,x2)| x1,x2∈R}. 

  Let  ( ), , V Rα β γ ∈  

∴ α = ( x1,x2), β = (y1,y2), γ  = (z1,z2) 
Let c, c1,c2,∈F. 
(V1) (V,+) is an Abelian group 

(i)  α + β    =  (x1,x2) + (y1+y2) 
               =  (x1+y1,x2+y2) 

(ii)  α  + (β +γ ) =  (α + β )+γ  

 LHS    = α  + (β +γ ) 
         =  (x1,x2) + (y1+z1,y2+z2) 
             =  ( x1+y1+z1, x2+y2+z2) 

RHS   =   (α + β ) +γ  
           =    (x1+y1, x2+y2) + ( z1,z2) 

     =  ( x1+y1+z1,x2+y2+z2) 
∴ LHS = RHS . 

( iii)  There exists 0 = ( 0, 0) ∈  V such that  
 ( 0,0) + ( x1,x2) =  (x1, x 2) + (0,0) = ( x1,x2) ∀ ( x1, x2) ∈V 
 
( iv)  ∀ α  =   (x1, x2) ∈V There exists -α = ( - x1,-x2) ∈  V such 
that 
(x1,x2) + (-x1, - x2) = ( -x1,-x2) +( x1,x2)= ( 0,0) = 0 
 
(V) α + β   =  (x1,x2) + (y1,y2) 

                          = (x1+y1, x2+y2) 
                          =  ( y1+x1, y2+x2) 
                          = ( y1,y2) +(x1,x2)  
                          =  β + α  
  ∴   ( V,+) is an ablian group . 
   ( V2) ( i) c (α + β )   =  c  ( x1+y1,x2+y2) 
                                     =  (c(x1+y1),c (x2+y2)) 
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                                     =  ( cx1+cy1,cx2+cy2) 
                                    =  ( c x1,cx2) + (cy1,cy2) 
                                    =  c ( x1,x2)+ c ( y1,y2)  
                                    =  c α +c β . 
                    
( ii) ( c1+c2) α             =   ( c1+c2)  ( x1,x2) 
                                     =   ( c1+c2) x1, ( c1+c2) x2) 
                                     =  ( c1x1+c2x1,c1x2+c2x2) 
                                     =  ( c1x1,c1x2)+ (c2x1, c2x2) 
                                     =  c1(x1, x2)+ c2(x1, x2) 
                                     =  c1α   +c2α . 
( V3) (c1 c2) α              =  (c1 c2) (x1, x2) 
                                     =  (c1 c2) x1, (c1 c2) x2 
                                     = (c1 (c2 x1) ,c1(c2 x2)) 
                                      =  c1(  c2 x1, c2 x2)) 
                                    =  c1( c2 (x1, x2)) = c1( c2α ) 
( V4) 1 . α  = 1.(x1, x2) = ( 1.x1, 1.x2) 
                                      = (x1, x2) = α . 

  ∴ all  the axioms of vector space are satisfied . 
  

∴ V  is a vector  space over the field of real numbers . 
 
(2) The  set  of all ordered triplets ( x1, x2, x3) over the field of 

real  numbers forms a vector space  w.r.t  addition and 
scalar multiplication  defined in the same way as in the 
previous example.  
Proof is similar to the proof of the previous problem. 
 

(3)  The set all ordered n tuples of the elements of the field  F 
froms a vector space w.r.t addition and scalar 
multiplication   defined as  

 ( i) ( x1, x2…………..xn) + (y1,y2,………….yn) 
                       = ( x1+y1, x2+y2,……………xn+yn) 
 ( ii)  c ( x1,x2…………..xn) =  ( cx1, cx2…………, cxn) 
 

Proof is as in the previous  examples . 
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The vector space of ordered n triples over the field of real 
numbers is denoted by Vn (R) or Rn which is called the n 
dimenstional space. 

 
 In particular, if n =2, the vector space is v2(R) which is the 
two dimensional plane and if n = 3, the vector space is v3(R) 
which is the three dimensional space. 
  
(4) Prove that the set of all real valued continuous 
(differentiable, integrable) fuctions of X defined in the interval 
[0,1] is a vector space. 
 
Solution : Let V be the set of all real valued continuous functions 
of x defined in [0,1] . 

Let f,g ∈  v and c∈R. then 
( f+g) ( x)  = f(x) +g(x) 

   and         cf (x) = (cf)(x) 
(V1) (V,+) is an abelian group . 

(i) If f and g are continuous  fuctions, then we know that their sum f + 
g is also continuous. 

 
 (ii) If f ,g,h ∈  V then 

     f +(g+h) = (f+g)+h 
Now   [f +(g+h)] (x) = f (x) + (g + h)(x) 
                                     = f(x)+ [g(x) + h(x)] 
                                     = [ f (x) + g(x)]+h(x) 
                                     = (f + g)(x) + h(x) 
                                      = [ (f + g) + h ] (x) 

∴          f + (g + h) = (f + g) + h. 
 

(iii) The  function 0(x) = 0 is the identity. 
 Q  ( 0 + f) (x) =0(x) + f(x) = 0 + f(x) = f(x)  

 and (f + 0)(x) = f(x) + 0(x) = f(x) + 0 = f(x)   
  ∴ 0 + f = f + 0 = f. 

 
( iv) (-f) x = -[f(x)] is the additive inverse of    f. 

Q(- f) x +f (x) = (-f + f) (x) = 0 (x) =0 
and f(x) +( -f) (x) = [f +(-f)] (x) =0 (x) = 0 
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( v) (f +g) (x) = f (x) +g(x) 

     = g (x) +f (x)  
     = (g +f) (x) 

         ∴ f +g   = g + f 
∴ (V, +)is an abelian group. 

 
(v2)  ( i) c (f +g)  =  cf + cg. 

[c( f +g )](x)    = c[(f+g)x] 
                                    = c[ f(x)+g(x)] 
                                   = cf(x) +cg(x)    
                                  =  (cf) (x) + (cg) (x) 
                                    = (cf +cg ) (x) 
          (ii) (c1+c2)f     = c1f+c2f 
               (c1+c2)f  (x)   =  c1f(x) +  c2f(x)         
                                     =  c1f+c2f(x) 

     ∴  (c1+c2)f   = c1f+c2f    
 

(v3)  (c1 c2) f   =  c1 ( c2f) 
        (c1c2) f(x)   = [(c1c2) f] (x)   
                         = [c1(  c2f)] (x) 
                         = c1 (  c2f)(x) 
∴ (c1c2) f         =  c1 (  c2f) 

( v4)    1. f  =  f 
(1.f)  (x)  = 1.f (x) =f(x)  

     ∴ 1. f  =  f 
 ∴ all the  axioms of vector space are satisfied  
 ∴ v forms a vector space . 
 

( 5)   The set of all convergent sequences of real number is a 
vector space over the field of real numbers. 

Solution:  Let    { }1 2,, .......... ........nα α α α=  

     
{ }
{ }

1 2

1 2

, ,........... ......

, ,.............. .....

n

n

β β β β
γ γ γ γ

=

=
 

be convergent sequences of real numbers. 
(V1) ( V,+) is an abelian group. 
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( i) { }1 1, 2 2 ,................, n nα β α β α β α β+ = + + +  

                 is also a convergent sequence. 

( ii) ( ) ( )α β γ α β γ+ + = + +  

( ) { }1 1 2 2 ,............, ,......... n nα β γ α β γ β γ β γ+ + = + + + +  

( ) ( ){ }1 1 1 2 2 2, ,..... ( ).......n n nα β γ α β γ α β γ= + + + + + +  

( ) ( ) ( ){ }1 1 1 2 2 2,, ..... .........n n nα β γ α β γ α β γ= + + + + + +  

{ } { }1 1 2 2 , 1 2, ......... ...... , ,...... ....n n nα β α β α β γ γ γ= + + + +  

= ( )α β γ+ +  

(iii) The identity element is { 0} = { 0, 0,   ………0,……..} 
 

(iv)  If  { }1 2, ,........... ........n thenα α α α=  

        { }1 2 ,, ... .. ... .. . .. ... .nα α α α− = − − −  

is the additive  inverse  
( v)  α  + β   = { α 1+ β 1, α 2+ β 2,…….α n+ β n……….}  

                       ={β 1+α 1, β 2+α 2 …………..β n+ α n……} 

                        =   β α+  

(v2)  c(α  + β   )  

    ={c(α 1+ β 1),c(α 2 + β 2,) ………c (α n +  β n)……  } 

    ={cα 1+c β 1, cα 2 + cβ 2,…………….  cα n + c β n……….} 

   =c{α 1, α 2 ……… α n,……..}+c { β 1, β 2,…… β n………….} 

   = cα  + cβ   
 (c1+ c2) α  =  (c1+ c2) { α 1, α 2 ……… α n,……..} 
                   = {(c1+ c2)α 1, (c1+ c2)α 2 ………(c1+ c2) α n,……..} 
                   = {c1α 1+c2α 1, c1α 2+ c2α 2……c1α n+ c2α n…….} 
                   ={c1α 1,c1α 2….. c1α n}+ {c 2 α 1, c2α 2,….. c2α n….} 
                   =  c1{  α 1, , α 2….. α n}+ c2{  α 1, α 2,…. α n….} 
                   =  c1α + c2α . 
 
( v3)  (c1 c2)α   = (c1 c2) { α 1,α 2….. α n…….} 
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                          = {(c1 c2)α 1, (c1 c2)α 2….. (c1 c2) α n……} 
                          = { c1 (c2α 1 ) , c1 (c2α 2),……. c1 (c2 α n)……}   
                          = c1{c2α 1  , c2α 2,…….c2 α n……}                           
                          =   c1c2α 1  , α 2,……. α n……}]                          
                          =  c1(c2 α ) 
 
( v4)1.α =1{α 1,α 2…..α n…….}={1. α 1,  1.α 2….1.α n….} 
                        = {  α 1, , α 2….. α n…….} 

                =   α . 
 

∴ The set of all convergent sequences forms sector space over 
the field of real numbers 

 
( 6) The set of  all ordered n – triples of complex numbers forms a 
vector  space over the field of complex numbers.  This is denoted 
by Cn  

 

Solution : Let V = {(z1,z2, ………zn ) | z1,z2, ………zn∈c} 
  Let α , β ,γ ∈V 

∴ α  = (α 1, α 2….. α n) , β = (  β 1, β 2……… β n)    
 γ  = (γ 1,γ 2………..γ n)  

     α + β  = (α 1+ β 1, α 2+ β 2…………. α n + β n)  

        cα   =   (cα 1, cα 2….. cα n).  Where c ∈ c. 
( V1) ( V,+) is an Abelian group . 
(i) α + β  = ( α 1+ β 1, α 2+ β 2………….α n + β n) ∈V 

(ii) α + (β +γ )  = (α + β )+γ  which can be easily verified 
(iii) 0  = ( 0, 0,0,……….0) is the additive identity  
(vi) α∀  =(α 1, , α 2….. α n) ∈V, there exists 
        -α  = (-α 1, - α 2….. -α n) ∈V such that  

  α +( -α ) = -α +α = (0,0,…………0) = 0. 
       (V)α + β  = α +α  

. 
(V2) ( i) c (α + β )   = c (α 1+ β 1,      α 2+ β 2……α n + β n)      

                               = (c(α 1+ β 1), c(α 2+ β 2)…… (α n + β n)) 
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                         = (cα 1 + cβ 1, cα 2+cβ 2, ……α n +cβ n) 

                         = (cα ,cα 2…. α n)+ ( cβ 1, cβ 2… cβ n)  

                         = c (α 1, α 2….. α n) +( β 1, β 2…… β n)      

                         = cα +cβ . 
  (ii) (c1+ c2) α = c1α + c2α . Which can be verified easily  

(V3) ( c1,c2) α = c1 ( c2α )  which can be verified easily  
(V4) 1. α  = 1 (α 1,α 2,…… α n) = (1α 1,1α 2,……….1α n) 

                                               =  (α 1,α 2,……….α n) 
∴ V is a  vector space over the field of complex numbers. 

(7)  Show that the set V = 
0

,
0

x
x y R

y

   ∈  
   

 is a vector space 

over the field of reals R. under usual + and x. 

Solution : 31 2

31 2

00 0
, ,

00 0

xx x
A B C V

yy y

    
= = = ∈    
     

 

and   1 2 3, ,c c c R∈  

1( )( , )v v +  is an abelian group 

(i)  1 2 1 2

1 2 1 2

0 0 0

0 0 0

x x x x
A B V

y y y y

+
+ = + = ∈

+
     
     
     

 

(ii) ( ) ( )A B C A B C+ + = + +  

31 2

31 2

00 0

00 0
LHS

xx x

yy y
= + +

     
     

      
 

   1 2 3

1 2 3

0

0

x x x

y y y

+ +
=

+ +
 
 
 

 

31 2

31 2

00 0

00 0
RHS

xx x

yy y
= + +
      
      
      

 

   1 2 3

1 2 3

0

0

x x x

y y y
=

+ +

+ +
 
 
 

 

∴ Associative law is valid 
 



       Linear Algebra                                      
 

9

(iii) Matrix 0∈ V such that 
0 0 0 0 0 0 0

0 0 0 0 0 0 0

x x x

y y y

         
+ = + =         

         
 

(iv) – A + A  = A + (-A ) = 0 

(v)  1 2 1 2

1 2 1 2

0 0 0

0 0 0

x x x x
A B

y y y y

+
+ = + =

+
     
     
     

 

2 1

2 1

0 0

0 0

x x

y y
B A

   
   
   

= + = +  

Hence (v +) is an abelian group. 

(v)  (i) 1( )c A B+  1

1

2
1

2

0

0

0

0

x

y

x
c

y

   = +   
    

  

1

1

2
1 1

2

0

0

0

0

x

y

x
c c

y

  = +   
   

 

= 1

1

1 2 1 2

0

0
( ) ( )

x

y
c c A c c

 + = +  
 

 

1 2 1

1 2 1

( ) 0

0 ( )

c c x

c c y

+

+
 =  
 

 

1 1 2 1

1 1 2 1

1 2

0 0

0 0

x x

y y

c c
c A c B

c c
   = + = +   
   

  

 
∴ Distributive axioms are valid. 

(v3)  
1

1

1 2 1 2

0

0
( ) ( )

x

y
c c A c c

  =   
  

 

1 2 1 2 1
1 1 2

1 2 1 2 1

0 0
( )

0 0

c c x c x
c c c A

c c y c y

   
= = =   
   

 

 
(v4) I is the identity of V w.r.t x  because 
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. .I A A I A= =   where 
1 0

0 1
I

 
=  
 

 

Hence 1 1. .I c c I= 1

1

0

0

c
V

c

 
= ∈ 
 

 

 All the axioms of vector space are satisfied. 
 ∴ V is a vector space over the field of real numbers  
 
(8)  Show that R2( R ) is not a vector space when + and x are 
defined as 1 2 1 2 1 1 2 2( , ) ( , ) ( , )α α β β α β α β+ = + +   

and 1 2 1 2 1 2 2.( , ) ( , ) , , , Rα α α αα αα α α β β= ∀ ∈  

Solution : Let 1, 2α β= =   and 1 2( , ) (3,4)α α =  

 1 2( ).( , ) (1 2)(3,4) (9,4)(9,12)α β α α+ = + =  

and  1 2 1 2.( , ) .( , )α α α β α α+  

(3,4) (6,4)= +  

(9,8)=  

So  1 2 1 2 1 2( ).( , ) .( , ) .( , )α β α α α α α β α α+ ≠ +  

Thus 2( )R R  is not a vector space. 
 
1.02 properties of vector space  
Theorem 1 :  Let V ( F) be a vector space  
then   ( i) c.0 = 0 Where c ∈  F and 0 ∈V 
  ( ii ) 0. α  = 0 where 0 ∈  F and    α ∈V  
 ( iii) (-c )α = - ( cα ) = c (-α ) ∀ c ∈  F and α ∈  V 

(iv  ) c (α - β ) = c α -c β  ∀  c ∈    F and α , β ∈  V  
Proof :  (i)  Consider c. α + c. 0 = c (α +0) =c. α = c. α  + 0 

∴ by left cancellation law, c.0 = 0 
 (ii) Consider c. α  + 0. α  = (c+0 ) . α  = c. α +0. α  

                                              = c. α + 0 (from (i))  
∴ c. α  + 0. α  = c. α  + 0. 
 By  left cancellation law , 0. α = 0 
 
(iii) Consider c. α  + (-c) α = [ c+ (-c) ] α  



       Linear Algebra                                      
 

11

                           = 0. α  = 0 ( from (ii)) 
and (-c) α + cα = (-c + c) α  

         = 0. α  = 0 (from (ii) )  
∴ cα  + (-c) α  = (-c) α +cα =0  
∴ (-c) α is the inverse of c. α  
 (- c) α = -(cα ) 
|||ly  c (-α ) = - (cα )  
∴ (- c) α = - (cα ) =c (-α ) 
 
(iv) consider c (α - β ) = c [α + (-β )] 

        = c α +c (-β ) 

        = c  α + (-c)  β  

        =    cα   - cβ  
Theorem 2 :  If  V(F) is a vector space over a field F,    

Then    (i)     ( )1 α α− = −               

            ( ii) β + (α - β ) = α  
           (iii) If a α = 0 then either a =0  orα = 0 

 Proof : (i) we have (-c) ( )cα α= −  

                  Take c = 1 ∴ (-1) α  = - (1. α ) 
                    ie,(-1)α =-α   
              (ii) β + (α - β )  = β + [α + (-β )] 

                                        = β + [- β +α ] Q  (V,+) is commutative 

          = [β + (-β ) ]+  α  
           = 0 + α  = α  

             (iii) aα = 0 (given) 
Let a≠ 0. Then we shall show that α = 0. 
Since a∈  the field F and a≠ 0, 
there exists a-1∈  F such that  a-1a = a.a-1= 1. 
Now  α  = 1 . α  = (a-1a)  α = a-1(aα ) = a-1(0)=0 
Again if a α = 0 and α ≠ 0 then we have a = 0 
Otherwise, i.e, if a≠ 0.  then as we have proved  above, 
α  =  0 which contradicts the assumption that α ≠ 0. 
 ∴ aα  = 0 ⇒a = 0 or α =0  
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Theorem 3:  If v(F) is a vector space then the cancellation laws 
hold . 

(i) a α  = bα ⇒a=b ; α ≠ 0,a,b∈F 
(ii)  aα  = aβ  ⇒ α = β ; 0a ≠ ,  α ,  β ∈v 

Proof : (i) a α  = bα ⇒ [a +(-b)] α   =  α +(-b) α  
                                   ⇒ [ a+ (-b)] α = [ b + (-b)] α  

                             ⇒ [a + (-b)] α  = 0α  
                             ⇒   [ a + (-b) ] = 0 
                             ⇒a + (-b) =0 Q  α ≠ 0 (given) 
                             ⇒  a = b. 

(iii)  since a ≠ 0 ,∴ a-1 exists in F such that  
a  a-1= a-1a = 1. 

 ∴ aα = aβ ⇒  a-1 (a α ) = a-1(aβ ) 

                      ⇒  (a-1a) α      = ( a-1a)β  

                     ⇒  1. α          = 1.β  

                     ⇒ α              = β  
1. 03 subspaces 
 
Definition :  A non –empty subset w of avector v is said to be a 
subspace of v over a field F if W is a vector space over F w.r.t. the 
same operation as in V. 
 
Example : The set V of all ordered triples (x1, x2, x3) over the field of 
real numbers , is a vector space w.r.t addition and scalar multiplication 
. the set w of all ordered triplets of the form          ( x1, x2, 0) isa subset 
of V and W is a subspace of V. 
 
It is easy to verify that W satisfies all the vector space axioms . 
 We shall see more example  later. 
 
Note  :  (i)    Every vector space has always two subspaces 
                     {0} and V. These are called trivial subspaces 
                      and other subspace is called a non-trivial 
                      subspace of V. 
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1.04 Criterion for a subset to be a subspace  : 
 
Theorem    1  :   A non – empty subset W of a vector  space  V is a 
subspace of V if and only if  
(i) α ∈w ,β  ∈W ⇒ α  + β ∈W   and  
(ii) c∈F, α ∈W ⇒ c α ∈W 
 
Proof : (a) Let W be a vector space over a field F  
∴ W  satisfies all the vector space axioms . 
∴ W is closed w.r.t. the addition and scalar multiplication . 
∴ ∀ α , β  ∈  W, α + β  ∈W. 

and ∀ α ∈W   and   c∈F, c.α ∈W 
 
 (b) Conversely, let W be a non-empty  subset of  V such that 
the condition (i) and (ii) are satisfied. We have to prove that w is a 
subspace of V, thus, we have to prove that W satisfies all the vector 
space axioms. 

(V1)   (a) α + β  ∈W, ∀ α , β  ∈  W. 

         (b) Since ( )α β γ+ + = ( )α β γ+ +  is satisfied in V, it is 

satisfied in the subset W also . 
          ( c) ∀ α ∈W, c. α ∈W. take c = -1 
                ∴   ∀ α ∈W, (-1) α = -α ∈W. 
                ∴  from condition (i) , α + (-α )∈W i.e, 0 ∈W. 
           ( d) ∀ α ∈W, where exists c = -1 ∈F such that  
                    cα  = (-1) α  = - α ∈W 
           (e) α + β  = β +α  is satisfied in V, hence it is satisfied in 
the subset W also . 
( V2) c (α + β ) = cα +cβ  
and   ( c1+c2) α =  c1α +c2α  are satisfied in V. 
Hence they are satisfied in the subset W also. 
 (V3) (c1c2) α  = c1(c2α ) is satisfied  in V and hence it is satisfied 
in the subset W also. 
(V4) 1. α  = α .∀ α ∈W and 1∈  F . 
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Theorem 2 :  A non-empty subset W of a vector  space V is a 
subspace of v if and only if  

 ( i) 1 2 1 2, , ,W c c F c c Wα β α β∈ ∈ ⇒ + ∈  

Proof : Since W is closed w.r.t scalar multiplication , c1α  and 
c2 β ∈W. and since W is closed w.r.t  addition , c1α + c2 β ∈W. 

∴ If  W is a subspace of V. then c1α  + c2 β ∈W.  

and as c1α + c2 β ∈W. 

choose c1= 1, c2= 1        ∴ 1α  +1β ∈W. 

                      ⇒  α + β ∈W 

 and ,c F C Wα∀ ∈ ∈  
∴ From the previous theorem ( the necessary and sufficient 
condition), it follows that   W is a subspace of V. 
 
∴ W is a subspace of V iff c1α + c2 β ∈W. 
 
Note : whenever we have to prove that W is a subspace of V, it is 
enough to verify that W is a non-empty subset of V and  
    ∀ 1 2 1 2, , ,W c c F c c Wα β α β∈ ∈ ⇒ + ∈  

 
Theorem  3 : The intersection of two subspaces  of a vector 
Space V over a field F is a subspace of V. 
 
 Proof : Let  Sand T be two  subspaces of V  
  S ∩  T = {α | α ∈  S and α  ∈T}. 
 We have to prove that ∀ α , β ∈  S ∩  T, 

c1α + c2 β ∈  S ∩  T  where C1,C2∈F . 

 α + β ∈  S ∩  T     ,α β⇒ ∈  S  and  ,α β ∈  T  

                                                   ⇒  c1α + c2 β ∈  S and c1α + c2 β ∈  T 
                                          since S and T are subspaces. 
                                  ⇒  c1α + c2 β ∈  S ∩  T  . 
           ∴ S ∩  T   is a subspaces of V 
 

Note : (i) This result can be extended to any finite number     
subspaces. 
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         i.e S1∩  S2 ∩ ………… ∩ Sn is a subspaces of V. 
        Whenever S1,S2……… Sn are subspaces of V. 
 
 (ii) The union of any two subspaces of V  need not   
                        be a subspace of V.       
  For eg . In V2 ( R)   let S = { ( X ,0) | X ∈R} 
  and  T= { (0,Y) | Y ∈R} be two subspaces. 
Then S U T = {α | α ∈S or  α ∈T} 

Let ( x, 0) , ( 0,y) ∈  S U T 

Then ( x,0) + ( 0,y) = (x,y) ∉ S U T. ∀ x,y∈R. 

For eg . ( 1,0) + ( 0,1) = ( 1,1) ∉ S U T. 

∴ Closure axiom is not satisfied  w.r.t .+ 
∴ W is not a subspace of V2 ( R) 
 
Theorem 4 :  The union of two subspaces of a vector space V over 
a field F is a subspace if and only if one is contained in the other. 
 
Proof :   Let S and T be two subspaces of V(F) 
 Let S ∪T be a subspace of V(F) 

T.P.T :  S  ⊆ T or T ⊆ S 

 If  S ⊄ T  ⇒ ∃ α S ;  α ∉ T 

 and T ⊄ S ⇒ ∃ β T :   β ∉ S  

⇒ α ∈ S  ⇒ α ∈ S ∪T 

   β ∈ T ⇒ β  ∈ S ∪T 

Since  S ∪ T is a subspace of V(F) 

α, β ∈ S ∪T ⇒ C1 α+ C2  β ∈ S ∪T ∀ C1, C2 ∈ F 

  ⇒ β ∈ S  and  α ∈ T 

which is a contradiction 

∴ our assumption is wrong 
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⇒ S ⊆ T or T ⊆ S 

Conversely.  Let S and T be two subspaces of V such that  S ⊆ T  or      

T ⊆ S 

 ⇒ S ∪T = S  or S ∪T = T 

 ∴ S ∪T is also a subspace of V(F) 

Worked examples : 
 

(1)  Prove that the subset W={(x1 ,x2, x3)| x1 + x2 + x3 = 0}of the 
vector space V3( R) is a subspace of V3( R). 
Solution : W is a non – empty subset of V3( R) 

 Let α , β ∈W and c1,c2 ∈R. 
∴ α  = ( x1,x2,x3) such that x1+x2+x3 = 0 
and β  =  ( y1,y2,y3) such that y1+y2+y3 =  0 

∴  c1α +c2 β  =  c1( x1,x2,x3)+ c2( y1,y2,y3) 
             = ( c1x1+c2y1,c1x2+c2y2,c1x3+c2y3) 

and   c1x1+c2y1+c1x2+c2y2+c1x3+c2y3 

   = c1( x1,x2,x3)+ c2( y1,y2,y3) = c1(0) + c2(0) = 0. 
∴ c1α +c2 β ∈W  
∴ W is a subspace of  V3( R). 
 
(2)   Prove that the subset W = { ( x,y,z,)| x-3y +4z = 0} of the 
vector space R3 is a subspace of  R3. 
Solution : W is a non empty  subset of R3 since at least one element 
(0,0,0) ∈W.  Such that 0-3.0+ 4.0 = 0. 
 Let α , β ∈W and c1,c2 ∈R. 
∴ α  =  ( x1,y1,z1) such that x1- 3y1 + 4z1 = 0 
   β  =    ( x2,y2,z2) such that  x2- 3y2 + 4z2 = 0 

 ∴   c1α +c2 β    =  c1( x1,y1,z1) + ( x2,y2,z2) 
                            =  ( c1x1+c2x2,c1y1+c2y2,c1z1+c2z2) 
and               c1x1+c2x2-3(c1y1+c2y2)+4c1z1+c2z2) 
                          =  c1( x1-3y1+ 4z1) + c2 ( x2- 3y2+4z2) 
                          =  c1(0) + c2(0) = 0 
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    ∴ c1α +c2 β  ∈W. 
 
(3)  Prove that the subset    W = { (x, y, z)| x = y = z }   is a 
subspace of V3(R) 
 
Solution :  W is a non-empty subset of   V3(R) 
Let α , β  ∈W  
∴    α  =  ( x1, y1, z1) such that x1 = y1 = z1  
       β  =    ( x2,y2,z2) such that  x2 = y2 = z2  

c1α +c2 β    =  c1( x1, y1, z1) + ( x2, y2, z2) 
              =  ( c1x1+c2x2,c1y1+c2y2,c1z1+c2z2)    

                x1 = y1 = z1 
and  x2 = y2 = z2 } ⇒  c1x1+c2x2=c1y1+c2y2=c1z1+c2z2 
∴    c1α +c2 β  ∈W  
∴ W is a subspace of  V3( R). 
 
(4)  If  a vector space is the set of real valued continous fuctions 
over the field of real numbers, then prove that the set w of 

solutions of the  differential  equation  
2

2
2 9 2 0

d y dy
y

dx dx
− + =  is a  

subspace of  V. 
 
Solution : 

W =  { 
2

2
2 9 2 0

d y dy
y

dx dx
− + =  } 

Clearly  y = 0 satisfies the given  differential  equation . 
∴ 0  ∈W  and hence W  is non-empty. 
        

 Let  y1and y2∈W and c1,c2  ∈R  then we have to show that   
c1y1+c2y2    satifies the differential equation. 

Consider 2
2

2

d

dx
(c1y1+c2y2 ) – 9

d

dx
 (c1y1+c2y2 ) + 2(c1y1+c2y2 )  

   =  c1
2 2

1 2 1 2
2 2 1 1 2 22 2

2 9 9 2 2
d y d y dy dy

c c c y c y
dx dx dx dx

+ − − + +   
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   =  
2 2

1 1 2 2
1 1 2 22 2

2 9 2 2 9 2
d y dy d y dy

c y c y
dx dx dx dx

   
− + + − +   

   
 

         = c1(0)+c2(0)Qy1,y2 satisfy the given differential equation. 
   =  0. 

∴ c1y1+c2y2 ∈W 
∴  W  is a subspace of V. 
 

(5)  Verify whether  W = ( ){ }2 2 2
1 2 3 1 2 3, , | 1x x x x x x+ + ≤  of the 

V3(R) is a  subspace  of V3(R). 
 
Solution :  
 Consider α  = ( 1, 0,0) ,β  = ( 0.0,1) 

     Clearly α , β ∈W since 12+ 02 + 02 ≤  1and  
            02+ 02  + 12  ≤  1 
            Now     α + β  = ( 1,0,0) + ( 0,0,1) = ( 1,0,1) 

      and 12+ 02 + 12= 2  which is not less than or equal to 1. 
∴ (1,0,1) ∈W 
ie, α + β ∉W  ∴ W  is not a subspace of  V. 

 
(6)  Examine the subset V = {( a + 2b, a, 2a – b, b | a, b ∈∈∈∈ R)} for a 

subspace of R4 

Solution :  Let α =  (a1 + 2b1, a1, 2a1 – b1, b1) 

  β = (a2 + 2b2, a2, 2a2 – b2, b2) are in V 

Consider c1α + c2β = c1(a1 + 2b1, a1, 2a1 – b1, b1) 

   + c2(a2 + 2b2, a2, 2a2 – b2, b2) 

From the addition of order pair in R4, 

=  (c1(a1 + 2b1, c1a1, c1( 2a1 – b1),  c1b1) 

   + (c2(a2 + 2b2) , c2 a2, c2 (2a2 – b2), c2 b2) 

=  (c1(a1 + 2b1+ c2( a2 +2 b2),  c1a1+c2 a2, c1(2a1 –b1) +c2 (2a2-b2),  
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c1 b1 + c2 b2)∈ V 

∴ V is a sub space of R4 

 
EXERCISE 

 
(1) Show that the set V of all ordered pairs of integers does not 

form a vector space over the field R of reals.     

(2) Show that the set of all pairs of real numbers over the field of 

reals  define as  ( ) ( ) ( )1 1 2 2 1 2 1 23 3 ,x y x y y y x x+ = + − − and   

( ) ( )1 1 1 13c x y cy cx= −  does not from a vector space.   

(3) Let ( ){ }, ,V x y x y R= ∈  and field is the set of reals show 

that V is not a vector space under  +  and scalar multiplication 

defined as in each of the following cases   

(i)  ( ) ( ) ) ( ) ( ), , (0, , , ,x y s t y t k x y kx ky+ = + =   

(ii)  ( ) ( ) ( ) ( ) ( ), , , , , 0,x y s t x s y t K x y ky+ = + + =   

(iii)  ( ) ( ) ( ) ( ) ( ), , , , , ,x y s t x s y t k x y kx y+ = + + =    

 
(4) Verify whether the following  sets  from vector spaces w.r.t 

the given operation and the given field. 
(i) the field of  complex numbers over the field of 

complex numbers 
(ii)  the field of complex numbers over field of real 

numbers . 
(iii)  the field of real numbers over the field of 

complex numbers  w.r.t  the usual addition and 
multiplication. 
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(5) Examine whether the set V of all orderd pair of integers from 
a vector  space over the field R of real numbers , w.r.t . 
addition of ordered  pairs and scalar multiplication of an 
ordered pair. 

(6) Verify the following for a vector space : The set of all 
polynomials with real co efficient over the field of real 
numbers w.r.t . addition of polynomials and scalar 
multiplication of  polynomials. 

(7)  Prove that V =
0

: ,
0

a
a b R

b

  
∈  

  
is a vector  space over 

the field of real numbers  w.r.t addition of matrices and scalar 
multiplication of a matrix. 

(8)  Prove that every field F can be considered as a  vector  space 
over F w.r.t  the operation  in F. 

(9) Prove that the set of all polynomials over the field of real 
numbers is a vector space w.r.t. the addition of polynomials 
and scalar multiplication  of polynomial 

(10) Prove that the set V = { }2 ,x y x y Q+ ∈  where Q  is the 

field or rationales ,w.r.t . addition  and  multiplication  of  real  
numbers, is a vector space.  

(11)  a)  Prove that the set  of all m x n matrices with real elements 
is a vector  space over the field of  real  numbers w.r.t  
addition and  scalar  multiplication of matrices.    

b) Show that the set of all matrices of the order n × n with their 
elements as real numbers is a vector space over the 〈R+ ⋅〉 
with the usual operations of matrices.      

 c)  Show that the set of polynomials   

  { }0,1,2, 1, 2, 2 1, 2 2, , 2x x x x x x+ + + + forms a vector      

  space over the field ( )3 3 3,I + × assuming the usual operations  

   for polynomials.    

(12) Verify which of the following are subspaces:     

(i) S = { (a1,0 ,a2) | a1,a2∈R} of V3( R)  
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(ii)  W = { (x,2y,3z) : x,y,z ∈R} of V3( R) 
(iii)  S= { (x,x,x) : x ∈R} of V3( R) 
(iv) W = { ( x,y,z ) : x,y,z∈Q }of V3 
(v) S = { ( x,y,z) : 2x+3y+ z = 0 of V3( R)   
(vi) W= { ( x,y,z) : x =y } of V3( R) 
(vii)  S = { ( x,y,z) : xy = 0 } of V3( R) 

(viii)  S = { (x,y,z) | 2  X = 5 y} of V 3( R) 
 
(13)  Which of the following sets are subspaces of the vector  

space V of all  polynomials over the field  of reals. 
(i)  The set of all polynomials of degree 4 
(ii)  The set of all polynomials of degree ≤ 4 
(iii)  The set of all polynomials of degree ≤ 5 
(iv)  The set of all polynomials of degree 5. 

 
(14)  Which of the following are subspaces of the  vector  spaces 

of all real valued continuous factions  defined  on [ 0,1], over 
R 
(i) all function  f for which 2f (0) = f(1)  

(ii)  all function  f for which f (x) = 0, [ ]0,1x∀ ∈  

(iii)  all function  f for which f (x) = 1. 

(15)  Show that  ( ){ },0,0w x x R= ∈  is a subspace of R3 over 

the   field Reals R.    

(16) Show that any plane passing through the origin is a subspace  

if V 3(R). 

(17) Prove that w= {(x, y, 0 ) | x ∈ R} is a subspace of R3 over the 

field of Reals R. 

(18) Determine whether or not the following subjects of R4 are  

Sub space.   

  (i)  ( ){ }, , ,A a b c d a b c d= + = +    
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  ( ){ }( ) , , ,ii B a b c d a c b d= + = +   

( ){ }( ) , , ,iii C a b c d ab cd= =  

( ){ }2 2( ) , , , 0iv D a b c d a b= + =  

( ){ }( ) 2 ,2 ,0, , ,v E a b a b c a b c R= + − ∈  

(19) Show that the following sub-sets are sub-spaces in ( )3v R   

 ( ){ }( ) 0, , 0, ,i A b c b c R= ∈  

( ){ }( ) , , 3 4 0 , ,ii B a b c a b c a b c R= − + = ∀ ∈  

( ){ }( ) , , ( 2 ), , 3 ), , ,iii C x y z x y y x y x y z R= + − + ∀ ∈  

( ){ }( ) , , 2 0, , ,iv D x y z x y z x y z R= + + = ∀ ∈  

(20) Prove that the set of all solutions ( )1 1 1, ,x y z of the equation 

 3 2 0x y z+ + =  is a subspace of the vector space ( )3v R    

(21)  Let v s=  and W  be the set of all ordered triplets ( ), ,x y z  

 such that 3 4 0x y z− + = . Prove that W  is a subspace of R3.  

(22) If a vector space is the set of real valued continuous functions  

 over the field of real numbers, then prove that the set W of  

 solutions of the differential equation 4 3 0y y y′′ ′− + =  is a  

 subspace of V.      

Answers 
 

 ( 4) (i) yes,  (ii) yes, (iii) no   (5) no  (6) yes 
 
 (12)  (i) yes,  (ii) yes, (iii)yes  (iv)  no (v) yes                   

(vi) yes  (vii)no(viii)yes 
(13) (i) no,   (ii) yes, (iii) yes, (iv) no. 
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(14) (i) yes,(ii) yes,(iii) yes 
 
(18)  (i), (ii),  (v) yes 

 
1.05   Linear span of a set 
 
Definition :  Let V be a vector space over the field F.   
and α 1, α 2,……..α mbe any m vectors of V. Any vector of the form  
c1α 1+ c2α 2,+……+cmα m    where c1,c2,…………cm∈  F is called a   
linear combination of the vectors α 1, α 2……….α m. 
 
Definition :  Let V be a vector  space over the field F. and  S be any 
non-empty subset of V.  Then the linear  span of S is the set of all 
linear combination of any finite number of elements of S and is 
denoted by L(S) 
 
∴L(S) = { C1α 1+ C2α 2+………+ Cmα m : α i∈S and ci∈F}, 

                 i  = 1, 2,…..m. 
 
Theorem 1 :  Let α 1, α 2,………. α m  be m vectors of a vectors  

space V over the  field  F. Then the set of all linear 
combinations of α 1, α 2,……. α m   is a subspace of 
V and it is the smallest  subspace containing all the 
given vectors. 

 
 Proof : Let S be the set of linear  combinations of α 1, α 2,……α m   

ie.,S ={ |α α =C1α 1+C2α 2+……+ Cmα m;C1∈F}, i =1,2,….m 
Now S is non-empty Q  every α 1 can be written as 1. α 1 and hence 
α 1∈  S 
Let α , β  ∈S  

 ∴ α = c1α 1+ c2α 2+…………+ cmα m 

      β  =  d1α 1, + d2α 2+,….dmα m   where cid i ∈F. 

  ∴ α + β  = (c1+d1) α 1+( c2+d2)α 2,+ …….+ (cm+dm) α m    

     = a linear combination  of α 1, α 2,………. α m    
Sα β∴ + ∈  

                College Mathematics VII 
 
24 
 
 cα = (cc1) α 1+ (cc2)α 2+…………+ (ccm)α m 
      = a linear combination of  α i. 
∴ c α ∈  S. 
∴ S is closed w.r.t.  scalar multiplication. 
∴ S is a  subspace of V. 
Now ,we shall that S is the smallest subspace containing 
 α 1, α 2,………. α m    

  Let W be any other subspace of V such that α 1, α 2,………. 
α m  ∈W 
 We shall  show that S ⊂  W 
Let  α = C1α 1+ C2α 2+…………+ Cmα m∈S 

∴ α ∈W 
∴ S ⊂  W 

 ie ,S is the smallest subspace containing α 1, α 2,………. α m  . 

 
Note :-  (1) The subspace of all linear combination of the set of 

given vector space is called the subspace  generated by 
these vectors or spanned by these vectors . 

   (2)  The subspace spanned by any nonzero vector α  of a 
vector space V, consists  of all scalar multiples of α . 
Geometrically ,it represents a line through the  origin and 
α . 

 (3)  The subspace spanned by any two non zero vectors 
α and β , which are not multiples of each other 

represents a plane passing through the origin, α and β . 
 
  Worked Examples  
 

(1) Express the vector ( 2,-1,-8) as a linear combination of the  
vectors  ( 1,2,1 ), (1,1,-1), (4,5,-2). 

     
Solution : ( 2,-1,-8) = a ( 1,2,1) + b (1,1,-1) +c ( 4,5 , -2)          

                =  ( a,2a,a) + ( b,b-b)  + (4c,5c, -2c) 
                 = ( a+b+4c ,2a + b +5c ,a- b-2c ) 
∴ a + b + 4c = 2              --------(1) 
    2a + b +5c = -1            --------(2) 
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    a - b –2c    =  -8           --------(3) 
Solving these simultaneous equations for a,b, c we get 
(1) – (2) ⇒ -a – c =3 or a +c = - 3 
(2) + (3) ⇒  3a + 3c or a + c = - 3. 
 
 Now giving some  value for c, say , c = 1, we get a = -4. 
 Substituting these values of a and c in (1) weget  
 -4 + b + 4 = 2     ∴ b = 2 
 ∴ ( 2, -1,-8) = - 4 ( 1, 2, 1) + 2 ( 1, 1, -1) + 1 (4,5,-2) 
 
 Note : The linear combination is not unique since by choosing  c = 0, 
we get a = -3 and b = 5. 
 
(2)  Prove that ( 3,-7,6) is in the span of the vectors 
( 1, -3,2),( 2,4,1),(1,1,1). 
  
Solution : To prove that  ( 3, -7,6) is in  the span of the vectors  
( 1, -3,2),( 2,4,1),(1,1,1), we have to express ( 3, -7,6) as a linear 
combination of these. 
 ( 3, -7,6)  =  a ( 1, -3,2) +b( 2,4,1) + c  (1,1,1) 
                 =  (a + 2b + c , -3a +4b + c , 2a +b + c) 
 ∴ a + 2b + c   = 3          ------------(1) 
      -3a +4b + c  = -7          -----------(2) 
       2a +b + c   = 6            ----------(3) 

(1) – (2)   ⇒  4a –2b = 10 ⇒2a-b = 5……..(4) 
(2) – (3)   ⇒  -5a +3b = - 13                 ……(5) 
 Multiple  (4) by 3 ∴ 6a –3b  = 15                   ………(6) 

(3) + (6)  ⇒  a = 2  
 ∴ (4) ⇒4 - b  = 5 ⇒b = -1 

             (1) ⇒  -2 +c = 3 ⇒ c = 3. 
     ∴ (3,-7 ,6) = 2 ( 1,-3,2) –1 (2,4,1) + 3 (1,1,1) 

 

(3)  Which of the vectors  ( 1,-3,5) and 
1 1 1

, ,
3 3 3

− − 
 
 

 is in the span 

of  ( 1,2,1), (1,1-1) and (4,5,-2). 
 
Solution : (1,-3,5) = a (1,2,1) + b (1,1,-1) + c (4,5,-2) 
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                              = ( a +b+4c+,2a + b +5c,a-b-2c) 
∴ a +b + 4c   = 1                              . .  (1) 
   2a + b + 5c  = - 3                                   . . . (2)     

         a –b – 2c     = 5                                . . (3) 
 (1) –(2) ⇒ -a – c = 4 ⇒a + c = - 4      . .  (4) 
(2) + (3) ⇒  3a +3c = 2                        . . . (5) 

              ⇒  a + c = 
2

3
        . . . (6) 

The equation are inconsistent since (4) contradicts (6) 
∴ There do not exit scalars a,b, c such that (1,-3,5) is expressed as a 
linear  combination of ( 1,2,1) , (1,1,-1),(4,5,-2). 
∴ ( 1, -3,5) does not lie in the span of the given vectors. 

Consider 
1 1 1

, ,
3 3 3

− − 
 
 

 =  a (1,2,1) + b (1,1,-1) + c (4,5,-2) 

                                       = ( a +b+4c+,2a + b +5c,a-b-2c) 

∴ a +b + 4c = - 
1

3
⇒  3a + 3b + 12c = - 1 …………( 1)  

    2a + b + 5c = - 
1

3
 ⇒   6a + 3b + 15 c = - 1 ………(2)  

   a –b – 2c     = 
1

3
⇒       3a – 3b – 6c = 1     …………(3) 

(1) - (2)   ⇒  - 3a – 3c = 0 ⇒  a +c = 0. 
 (2) + (3) ⇒9a +9c   = 0 ⇒  a + c = 0. 
 Choose c = 1 , ∴ a = - 1 
  
Substituting these in (1) we get 
      -3 + 3b + 12 = -1 
                     3b = -10 

                    ∴  b = - 
10

3
 

∴ 1 1 1
, ,

3 3 3

− − 
 
 

 = - 1 ( 1,2,1) - 
10

3
(1,1,-1) + (4,5,-2) 
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∴ 1 1 1
, ,

3 3 3

− − 
 
 

 lies in the span of the  vectors 

 (1,2,1), (1,1,-1) ,(4,5,-2). 
 

(4)  Verify whether 
3 1

1 2

− 
 − 

is in linear span of  

       
1 1 1 1 1 1

, ,
0 1 1 0 0 0

−     
     − −     

 

Solution :   
 

3 1

1 2

− 
 − 

= a 
1 1 1 1 1 1

0 1 1 0 0 0
b c

−     
+ +     − −     

 

 

                            =  
0 0 0

a b c a b c

b c a

+ + + − 
 − + − + + 

 

                            = 
0a b a b c

b a

+ + + − 
 − − 

 

                ∴ a + b +c = 3 ,a + b – c = - 1 
                                        - b = 1,       - a = - 2 
                      
                  ∴  b =  -1 ,     a = 2,          ∴c =  2 

Hence 
3 1

1 2

− 
 − 

=  2
1 1 1 1 1 1

1 2
0 1 1 0 0 0

−     
− +     − −     

 

∴
3 1

1 2

− 
 − 

lies in the  span of the given vectors. 

 
(5) Prove that the xy – plane is spanned  by the vectors  
     ( 1,2,0) and (0,1,0) in R3 
 
Solution :  xy – plane is { (a,b,0) |a,b ∈R} 

( a,b,0) = k1(1,2,0) + k2 ( 0,1,0) 
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            =  ( k1,2k1,+ k2,0) 
 ∴ k1 = a, 2k1 + k2= b. 

           ⇒  2a + k2 = b 
           ⇒                  k2 = b – 2a. 
  

 ∴( a,b,0)  = a (1,2,0) + (b-2a) (0,1,0) 
 Hence (a,b,0) is expressed as linear combination of (1,2,0) and 
(0,1,0). 
∴xy- plane  is spanned by (1,2,0) and (0,1,0). 
 

(6)  Find the subspace spanned by the vectors ( 3,0,0) and   (0,0,-5) 
of the vector  space V3(R ) 
 
Solution :  Any vector subspace S is of the form 

      a(3,0,0) + b (0,0,-5) where a,b ∈R 
                   = (3a,0,0) +  (0,0,-5b) 
                   =  (3a, 0,-5b) 

    ∴  S = { (3a, 0,-5b) : a,b ∈R }. 
 

(7)  For what value of k, the vector (1, k, 5) is a linear combination 

of vectors (1, -3, 2) and (2, -1, 1) 

Solution :  Let (1, k, 5) = C1(1, -3, 2) + C2 (2, -1, 1) 

     = (C1 + 2C2, -3C1,-C2, 2C1 + C2) 

Equating the respective components 

C1 + 2C2 = 1   .  . . (1) 

-3C1 – C2 = k  . . . (2) 

2C1 + C2 = 5  . . . (3) 

From (1)  - 2(3) ⇒  C1 + 2C2 = 1 

   4C1 + 2C2 = 10 
   ____________ 
   -3C1 = - 9 1 3c⇒ ∴ =  

Substituting C1 = 3 in (1) we get C2 = -1 
 If system of equations are consistent then 
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  -3(3) – (-1) = k   
     k = -8 

(8)  Write the vector 
3 1

1 2
A

− 
=  − 

, in vector space 2 x 2 matrices 

as a linear combination of   
1 1

,
0 1

B
 

=  − 
    

1 1

1 0
C

 
=  − 

  

1 1

0 0
D

− 
=  
 

 

Solution : Let A = C1 B + C2C + C3D 
 

3 1

1 2

− 
 − 

=C1 1 2 2

1 1 1 1 1 1

0 1 1 0 0 0
C C C

−     
+ +     − −     

 

1 2 3 1 2 3

2 1

C C C C C C

C C

+ + + − 
=  − − 

 

Equating the respective elements 
1 = -C2, -2 = -C1,  3 = C1 + C2 + C3 

∴ C2 = -1, C1 = 2 C3 = 2 
∴ Given vector A is a linear combination with B, C, D for the 
above constants. i.e., 

A = 2 – C+ 2D. 
 

(9)  Show that 3x2 + x + 5 polynomial is the linear span of the set  
S= {x3, x2 + 2x, x2 + 2, 1 - x}   
Let 3x2 + x + 5 = c1(x

3)+ c2(x
2 +2x)+c3(x

2 + 2)+c4 (1-x) 

 =  c1(x
3)+ x2 (c2 +c3) + x (2c2 - c4) 

+2c3 (1-x)+ c4 

Equating  the respective degree terms, 

c1 = 0,  c2 + c3  = 3,  2c2  - c4 = 1, 2c3 + c4 = 5 

Solving : c2 = 3, c3 = 0, c4 = 5 

∴ 3x2
 + x + 5 = 3 ( x2 + 2x) + 5( 1 – x) ∈ L(S) 
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(10)  Let αααα = ( 1, 2, 1)  ββββ = (3, 1, 5) and γγγγ = (-1, 3, -3) of V3(R).  

Show that {αααα, ββββ} {αααα, ββββ, γγγγ} are the same subspaces of V3® 

Solution:  Let T = {α, β} S = {α, β, γ} 

Since  T ⊂ S, we have L(T) ⊂ L(S) 

Let  δ ⊂ L(S) ⇒ C1 α + C2 β + C3 γ = δ . . . (1) 

 γ ⊂ T(T) ⇒ a1 α + b2 β = γ 

 a1(1, 2, 1) + b1(3, 1, 5) = (-1, 3, -3) 

 ⇒ a1 + 3b1 = -1 

     2a1 + b1 = 3 

      a1 + 5b1 = -3 

Solving the above, a1 = 2, b1 = -1 

Thus  2α - β = γ 

(1) ⇒ C1 α + C2 β + C3 (2α - β) = γ 

  (C1+ 2 C3) α + (C2 - C3)β = γ 

∴ δ is a Linear combination of the set S  

  ∴ L(S) ⊂ L(T) 

  ∴ L(S)  =  L(T) 

Exercises 
 

1.  Express the vector (1, -2, 5) as a linear combination of the 
vectors (1, 1, 1) (1, 2, 3), (2, -1, 1). 

2.  Prove that (2, -5, 4) can not be expressed as a linear 
combination of (1, -3, 2) and (2, -1, 1) 

3.  Write the vector (1, 7, -4) as a linear combination of vectors 
α1(1, -3, 2) and α2(2, -1, 1) vector space V3(R).  
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4.  Is the vector α = (2, -5, 3) in V3( R ) a linear combination of 
vectors α1 = (1, -3, 2) α2 = (2, -4, -1) α3 = (1, -5, 7)  

5.  Show that the vector α = (2, 2, 3) is in the span of the vectors 
α1 = (2, 1, 4)  α2 = (1, -1, 3) and α3 = (3, 2, 5)  

6.  a)  Find K so that (1, K, 5) is a linear combination of (1, -3, 2) 
and (2, -1, 1) 
b)   For what value of K will the vector (1, -2, K) be a linear 
combination of the vectors (3, 0, -2) & (2, -1, -5) 

7. Prove that the xz-plane may be spanned by the vectors          
(3, 0, 1)  and (-3, 0, 2) 

8. In R3 show that the plane X = 0 may be spanned by the 
vectors (0, 2, 2) and (0, 4, 1). 

9. Express ( 3,-7,6) as a linear  combination of the vectors        ( 
1,-3,2),  (2,4,1), (1,1,1)  in V3(R ) . 

10. Express ( -1 ,4,-4) as a linear combination of the  vectors 
(3,0,4) and  (-2,2,-4) in R 3 

11. Can the  vectors  ( 3,1,4) be expressed as a linear combination 
of (2,3,1) and  (1,2,3)? 

12. Examine  whether the vectors (i) (3,3,3,), (ii) ( 4,2,6) 
(iii) (1,5,6), (iv) (0,0,0) can be expressed as a linear 
combination of the vectors (1,-1,3) and ( 2,4,0). 

13. Which of the  following are linear combination of 

A = 
1 2 0 1 4 2

, ,
1 3 2 4 0 2

B C
−     

     − −     
 

( a) 
6 3

,
0 8

 
 
 

 (b)
1 7

,
5 1

− 
 
 

(c)
0 0

0 0

 
 
 

,  (d) 
6 1

8 8

− 
 − − 

 

 
14. Which of the  following  sets  span V3(R). 

a) { ( 1,1,1),(2,2,0),(3,0,0) 
b){ ( 2,-1,3),( 4,1,2),(8,-1,8)} 
b) { ( 1,2,1),(2,1,0),(1,-1,2)} 
c) { ( 1,0,0),(1,1,0), (1,1,1),(0,1,0)} 

      
  15.  Express the  following as linear combination of   
 P1= 4x2+ x + 2, 
       P2 = 3x2- x + 1 , P3 5x2 + 2x + 3 
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(a)  5x2+ 9x + 5,  (b) 6x2 + 2 ,  
(c) 3x2  + 2x + 2 , (d) 0. 

 
Answers 

1.  (1, -2, 5) = -6(1, 1, 1) + 3(1, 2, 3) – (2, -1, 1) 
3. (1, 7 -4) = -3α1 + 2α2 
4.  No. 6.  a) K = -8 b) K = -8 

9.   2 (1,-3,2) + (-1) (2,4,1)+ 3(1,1,1) 

10. 1( 3,0,4) + 2(-2,2,-4) 

11.  N0  

12. (i), ( ii), (iv) are expressible 

13. (a) , (c), (d) are linear combinations 

14  (a) yes, (b) no, (c) yes, (d) yes 
 

15   (a) 3p1 – 4p2 + p3  (b)  4p1 – 2p3 

(c)  
1

2
 (p1 – p2 + p3)  (d)  O(p1 + p2 + p3) 

 
1.06  Linear Independence and Dependence: 
 
Definition :  A set {α 1, α 2 ,……………. α n } of vectors of a space V 
over a field F said to be  linearly independent if there exist scalars c1 , 
c2 , cn such that c1 α 1 +c2 α 2 + ……+cn  α n  =0  then c1= 0, c2 

=0…….. cn =0 
 

Definition : A set {α 1, α 2 ,……………. α n } of vectors of a vector 
space V over a field F is said to be linearly dependent if it is not 
linearly independent. i.e., the set {α 1, α 2 ,……………. α n } of a vector 
space over a field F is said to be linearly dependent if there exist 
scalars   c1, c2,……………………, cn not all zero such that  c1 α 1 +c2 α 2  
……+cn  α n  =0 
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Note : The null set φ  is always taken as linearly independent set. 

 
Worked Examples: 

 
(1)  Show that the set S = {( 1,0,0)}, (0,1,0), (0,0,1)} is linearly 
independent in V3(R). 
 
Solution : Let e1= (1,0,0),   e2 = (0,1,0), e3 = (0,0,1) 

Consider c1e1+c2e2+c3e3 = 0 

⇒  c1(1,0,0)+c2(0,1,0)+c3(0,0,1)=(0,0,0) 

⇒ ( c1,0,0)+(0,c2,0 )+c3(0,0,c2)=(0,0,0) 

⇒ (c1,c2,c3)=(0,0,0) 

⇒ c1=0,c2=0,c3=0 

        ∴S ={e1,e2, e3} is linearly independent. 

(2)  Show that  the set S {(1,1,1),((2,2,0), (3,0,0)} is linearly 
independent. 

Solution :  Let α  = (1,1,1), β  = (2,2,0),γ  = (3,0,0) 

                 ∴ c1α +c2 β  +c3γ =0 

⇒  c1 (1,1,1)+ c2 (2,2,0) +c3(3,0,0)=(0,0,0) 

⇒ (c1+ 2 c2+3c3,c1+2c2, c1)=(0,0,0) 

⇒ c1+2c2+3c3=0,c1+2c2=0,c1=0 

c1=0,c1+2c2=0 ⇒2c2=0, 

c1=0,c2=0,c1+2c2+3c3=0⇒ c3=0 
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∴ c1=0,c2=0,c3=0 

∴ S={ , ,α β γ } is linearly independent 

(3)  Prove that the set S = {(1,3,2), (1,-7,-8), (2,1,-1)} is linearly 
dependent. 

Solution : Let α  = (1,3,2),β = (1,7-8),γ = (2,1-1) 

∴c1α +c2 β +c3γ  =  0 

⇒ c1(1,3,2)+c2(1,-7,-8) +c3(2,1,-1) =(0,0,0) 

⇒  (c1 + c2 + 2c3, 3c1- 7c2 + c3, 2c1- 8c2 – c3) = (0,0,0) 

⇒  c1 + c2 + 2c3 = 0, 3c1- 7c2 + c3 = 0  2c1- 8c2 – c3 = 0 

⇒ c1= 3k ,c2 = k ,c3 =  - 2k any arbitrary  k. 

 ∴ c1α +c2 β +c3γ =0 need  not  imply  c1 =  0, c2 = 0 ,c3 = 0 

∴   S = { α , β ,γ } is linearly dependent. 

1.07   Standard properties  of linearly  independent and dependent  
sets 

 Theorem 1 : Let V be a vector  space over a field F . then  

(i) The set of vectors V containing the null vector  is 
linearly dependent  

(ii)  The set consisting of single vector α  of V is linearly   
independent if and only if α ≠ 0 

(iii)  Every non-empty subset of a linearly independent set 
of a vectors of V is linearly independent. 
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(iv) Any super set of a linearly dependent set is linearly  
dependent. 

Proof : 

(i)  Let S = {α 1, α 2 ,… α n } be a set of vectors of V  

 containing the  zero vector . Let α 1 = 0 

then 1. α 1 + 0. α 2 + ……..+ 0. α n = 0 Q  1. α 1 =  α 1= 0. 

∴there exists a linear combination  of  the  form 

c1α 1+ c2α 2+ ………………cnα n = 0 in which c1 ≠  0  

(i. e, not all ci= 0) 

∴ S is linearly  dependent. 

(ii)  Let { α } be a set  consisting of a single vector . 

 Let {α } be linearly  independent . we shall prove that α ≠  0  

If α  = 0 , then {α } is a set consisting of the null vectors and hence 
from (i) { α } is linearly dependent . 

Which  contradicts  that {α } is linearly  independent. 

  ∴ α ≠  0. 

 Conversely, let α ≠  0 then  

c . α   = 0 ⇒  c = 0 or α = 0. 

But α ≠  0 ∴ c = 0 

∴ { α } is linearly  independent  . 
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 (iii)  Let S be a linearly independent  subset  of V. 

Let T be sub set of S      

If  T is a null set ,then it is  linearly independent. 

If T is a non-empty set, then S may be a  finite  set or an infinite set. 

(a) Let S be a finite subset of V. 

     Let  S = {α 1, α 2 ,……………. α n }  

     Let   T = {α 1, α 2 ,……………. α m} where 1 m≤ ≤ n. 

    Let    c1,c2,……………….cm∈  F be such that 

     c1α 1+ c2α 2 +……………. cmα m = 0 

Then c1α 1+ c2α 2 +…………. cmα m  + 0 α m+1+ …+ 0 α n = 0 

1 2 ................. 0.nc c c⇒ = = = = since S, is linearly independent . 

∴ T is linearly independent set. 

(b)  Let S be a finite set. 

If T is a finite subset of S, then as T is a finite subset of an infinite 
linearly independent set S, 

∴T is linearly independent . 

If T is an infinite subset of S, let W be any finite subset of T. 

∴W is linearly independent as Sis linearly  independent  

∴T is linearly independent . 
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(iv) Let S =  {α 1, α 2 ,……………. α n }be a linearly dependent  set  so 
that c1α 1+ c2, α 2 +……………. cmα m = 0⇒  at least one c1 ≠ 0. 

Consider the super set {α 1, α 2 ,………α i….α m, α n} then  

c1α 1+ c2, α 2 +……………+.ciα i+………+ cmα m+ cα n= 0 

In this equation, there is atleast  one Ci ≠ 0. 

Hence the super set {α 1, α 2 ,……………. α 1…….α m, α } is not 
linearly independent  

∴ it is  linearly dependent . 

Theorem 2 : A set of non-zero vectors {α 1, α 2 ,………… α n } of a 
vectors space V(F) is linearly dependent  if and only if some one of 
those vectors  say α k( 2 k≤ ≤ n ) is expressed as a linear 
combination of its preceding ones. 

Proof : (i) condition necessary: 

i.e , if = {α 1, α 2 ,………α n }is linearly dependent then to prove that 
α k is expressed as a linear combination of  α 1, α 2 ,………α k-1 where  
2 k≤ ≤ n.  Since S is linearly dependent, there exist scalar C1 not all 
zero such that  c1α 1, + c2α 2 +,…………+ ck α k+ …………cnα n = 0 

 Let Ck be the last non-zero scalar. 

If  k = 1, then C1α 1 = 0 ⇒  α 1 = 0 0.ic ≠Q  

α 1 = 0 is a contradiction to the hypothesis that α 1, α 2 ,………… α n  

are non-zero vectors . 

∴ k≠  1 ∴2 k≤ ≤ n. 
Now c1α 1,+ c2α 2 +,…………+ ck α k = 0 ( ck ≠ 0) 
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11 2
1 1............ k

k k k
k k k

cc c

c c c
α α α α−

−
−∴ = −  

∴ α k is a linear combination of its preceding ones. 
 
 (ii) Condition sufficient : 
i.e ,if one of the vectors say α k is expressed as a linear combination 
of its preceding ones , then set 
S = { α 1, α 2 ,……………. α n} is linearly dependent . 
 α k    =   c1α 1,+ c2α 2 +,…………+ ck-1 α k-1       
∴ c1α 1,+ c2α 2 +,…………+ ck-1 α k-1 -  α k = 0 . 
 
This is be written  as  
 c1α 1,+ c2α 2 +,…………+ ck-1 α k-1+ (-1) α k+ 0α k+1 

   + ……….+0 α n= 0.   
 
In this equation ,there is atleast one scalar –1 which is not  
Equal to 0 Hence the  set S ={ α 1, α 2 ,……………. α n} is linearly 
dependent .           
 
Note : Two vectors  are linearly dependent  iff  one is a multiple of the 
other. 

Theorem 3 : A subset S = { ( x1, x2, x3), (y1, y2, y3) ,( z1, z2, z3)} of 
V3(R)  is linearly dependent iff. 

1 2 3

1 2 3

1 2 3

0

x x x

y y y

z z z

=  

           Proof :  The set  S is linearly dependent  if there exist  scalars 
c1,c2,c3 not all zero such that  

c1  ( x1, x2, x3) + c2 (y1,y2,y3) + c3( z1, z2, z3) = (0,0,0)  
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 i.e , iff (c1x1+ c2y1+ c3z1, c1x2+ c2y2+ c3z2, c1x3+ c2y3+ c3z3) = (0,0,0) 
i.e iff the equations 

               c1x1+ c2y1+ c3z1    = 0 

                c1x2+ c2y2+ c3z2   = 0 

                c1x3+ c2y3+ c3z3   = 0     has a non –trivial solution. 

i.e.,  iff the coefficient matrix 
1 2 3

1 2 3

1 2 3

x x x

y y y

z z z

′ 
 
 
  

 is singular. 

i.e., iff the determinant 
1 1 1

1 2 3

3 3 3

0

x y z

x y z

x y z

=  

or 
1 2 3

1 2 3

1 2 3

0

x x x

y y y

z z z

=  since TA A= . 

 Hence  the proof of the  theorem. 

i.e The set S  is linearly independent if the determinant ≠  0 

Note :  This theorem can be extended to a subset of  n vectors in the 
vector space Vn (R ) . 

Theorem 4 : A set  of vectors is linearly dependent  if and only if it  
contains a proper subset spanning  the same subspace. 

Proof :  Let S = { α 1, α 2 ,……………. α n} be a linearly dependent  set 
of vectors  of the vector space V. 
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  Let W be the  subspace spanned by the elements of S. 

 Since S is linearly dependent  , it must contain  a vector say 
α k  which is a either 0 or it is expressed as a linear combination of its 
preceding ones. 

 Even if we delete this vector α k from  S , still it spans the 
subspace W. 

 Repeating this  process of deleteing a vector, we arrive at a 
subset S1 of S which spans the subspace W and no elements of which 
is linear combination of its preceding ones. 

∴ the final set S1 is linearly independent . 

  Conversely, if S has proper subset S1, whose elements span 
the same subspace as S does, then it contains an element which is a 
linear  combination of the elements of itself. 

Hence the theorem . 

Theorem 5 : A finite set of vector  of a vector space V containing 
non –zero vectors has a linear independent subset which span the 
same subspace. 

Proof : The proof of this  theorem is the same as that of the first part 
of the previous theorem. 

Theorem 6 : If n vector span a vector space V, over a field F and r 
vectors of V are linearly independent then n≥ r. 

Proof :  Let S = { α 1, α 2 ,……………. α n} be a set of n vector of V 
which spans V. 

Let T ={ β 1, β 2,………. rβ }  be a set of r linearly independent 

vectors of V. 
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Since S spans V, every vectors of V is a linear combination of       α 1, 
α 2 ,……………. α n. 

 ∴ β 1∈  V  is also a linear combination of  α 1, α 2 ,………… α n. 

Hence (by theorem 4) the set T1={ β 1,α 1,α 2 ,……….α n}  is linearly 
dependent and spans V. 

∴There exists a vector say 
i ITα ∈  which is a linear combination of 

the proceeding ones. 

 This cannot be β 1 since it belongs to the linearly independent T. 

Deleting this vector α I from TI we get 

      S1={ β 1 , α 1, α 2 ,………… 1iα − , 1,iα + ………α n.} 

Now S1 is linearly dependent and still spans V.  

  ∴ β 2 ∈  V is a linear combination of the elements of S1 

Hence the set Tα ={ 2, 1 1 2, , ,......... nβ β α α α } is linearly dependent and 

spans V.  

∴ there exists a vector say j Tαα ∈  which is a linear 

combination of the preceding ones. 

          This cannot be β α since it belongs to the linearly independent 
set T. 

      Deleting this vector  jα  from Tα  we get 

    Sα = { 2, 1 1 2, , ,.........β β α α 1iα − , 1,iα + ,…α j-1α j+1 ……α n} 
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 Which still generate V. 

Repeat  this process of deleting  one α  and including one β , till all 

the β ’s are exhausted. 

To do this , the number of  α ’s must be greater than or equal to the 
number of β ’s.    i.e ,n ≥ r. which proves the theorem. 

Worked Problems 

(1) Prove that the set S = { (1,2,1),(2,1,0),(1,-1,2) } is linearly 
independent. 

Solution : Consider the determinant 

   

1 2 1

2 1 0

1 1 2−
 = 1(2 - 0) – 2 ( 4 - 0) + 1 (-2 -1) 

     = 2 – 8 – 3 = -9 ≠ 0. 

 ∴ The set S is linearly independent. 

(2)  Show that the vectors (1, 1, 2, 4), (2, -1, -5, 2), (1, -1, -4, 0) and 
(2, 1, 1, 6) are linearly dependent in R4. 

Solution   :  Consider 

1 1 2 4

2 1 5 2

1 1 4 0

2 1 1 6

− −
− −

 

 C2 – C1, C3 + (-2)C1, C4 + (-4) C1 
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       =

1 0 0 0

2 3 9 6

1 2 6 4

2 1 3 2

− − −
− − −
− − −

  = 1 

3 9 6

2 6 4

1 3 2

− − −
− − −
− − −

 

  

1 3 2

( 3)( 2)( 1) 1 3 2 0

1 3 2

= − − − =  

∴Given set is L.D. 

(3) Show that S = { ( 1,2,4), 1,0,0), (0, 1, 0) 0,0,1) } is linearly 
dependent in V3 (R ). 

 Solution : S can be written as  

                 S  = { ( 1,0,0), (0,1,0) (0,0,1) ,(1,2,4).} 

           Consider 1 ( 1,0,0) + 2 (0,1,0) + 4 (0,0,1) 

                         = (1,0,0) + (0,2,0) + (0,0,4)  

                         = ( 1,2,4)  

∴ ( 1,2,4) can be expressed as a linear combination of its 
preceding vectors as 1 (1,0,0) + 2 ( 0,1,0) + 4 ( 0,0,1)  

∴ S is linearly dependent . 

(4) Find whether the set = { x2– 1, x + 1, x -1} is linearly 
independent in the vector space of all polynomials over the field of 
real numbers. 

Solution :  S  = { x2 –1,x+1,x –1} 
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Consider       c1(x
2 –1) + c2 (x+1) +c3(x –1) = 0. 

⇒       c2 x
2-c1+ c2x + c2 + c3x –c3 = 0 

⇒    c1x
2+ (c2+c3) x+ ( -c1+ c2-c3) = 0 

⇒         c1 =0 ,c2 + c3 = 0, -c1 + c2 –c3= 0 

⇒   c2 + c3 = 0, c2 –c3= 0⇒ c2 = 0,c3 = 0 

∴  c1 (x
2-1) + c2 (x-1) + c3(x-1) = 0 ⇒ c1=0,c2= 0,c3=0 

∴ S is linearly  independent . 

(5) Prove that the four  vector α 1 = (1,0,0), α 2= (0,1,0),    α 3= 
(0,0,1), α 4= (1,1,1) in V3

 (R) are linearly dependent  but any three 
of them are linearly independent. 

Solution :  

 Let  c1(1,0,0) + c2(0,1,0) + c3(0,0,1) + c4 (1,1,1) = (0,0,0) 

  ⇒  (c1+ c4, c2+ c4, c3+ c4) = (0,0,0) 

⇒  c1+ c4,= 0 c2+ c4,= 0 c3+ c4= 0. 

∴If  c4 = -k, c1= k, c2 = k c3 = k.  Now choosing k = 1, we get 

c1α 1 + c2α 2+ c3α 3 + c4α 4 = 0 ⇒  α 1 +  α 2  + α 3 - α 4 = 0. 

∴ { α 1 , α 2  , α 3 , α 4} is L.D. 

Now let us show  that {α 1 α 2  α 3}is L.I. 

c1α 1 + c2α 2+ c3α 3 = 0 

⇒  c1(1,0,0) + c2(0,1,0) + c3(0,0,1) = (0,0,0) 
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⇒ ( c1, c2, c3) = (0,0,0) 

⇒  c1 = 0,  c2 = 0,  c3 = 0 

∴{ α 1,  α 2 , α 3} is L.I 

(6) If   α , β , γ   are linearly independent vectors in a vector 
space V( F),  then prove that  

(i) α + β , β + γ ,γ + α  

(ii) α + β,α  - β ,α - 2β + γ  are also linearly independent. 

Solution : (i) Consider  

a(α + β )  + b (β + γ ) + c(γ + α ) = 0 

⇒aα + aβ   + b β + bγ  + cγ + cα = 0 

⇒  (aα + cα ) + (aβ   + b β ) + (bγ  + cγ )= 0  

⇒ (a+ c) α + (a  +  b)β  + (b + c)γ = 0 

⇒ (a+ c) = 0, (a  +  b) = 0 (b + c) = 0 since α , β ,γ  are L.I. 

⇒a = 0, b = 0, c = 0 (by solving the equations) 

⇒ α + β , β + γ , γ + α  are linearly independent. 

(ii) a (α + β) + b(α  - β ) + c(α - 2β + γ ) = 0 

  ⇒  a α + a β+bα  -bβ +cα - 2cβ + cγ  = 0 

⇒  a α + cα + a β-b β - 2cβ + cγ  = 0 
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⇒ (a+ c) α +( a-b-2c) β + cγ = 0 

⇒  a+ c =  0  a-b-2c =  0  c= 0 since α , β γ  are L.I 

⇒  a = 0,b = 0 ,c = 0 ( by solving the  equations.) 

⇒ α + β , α - β ,α -2 β +γ  are linearly independent. 

 
EXERCISE 

 
1.  Show that S = {(1, 2, 3) (1, 0, 0) (0, 1, 0) (0, 0,1)} is a linear 

dependent subset of the vector space R3 (R ). 
 
2.  Show that {1, x, x2, x3, . . .  } is  Linear independent  of vector 

space F(x) of all polynomials over the field F. 
 
3. Prove that if  two vectors are L.I one of them is a scalar 

multiple of the other. 
 
4. Prove that the set of vectors which contains the zero vector is 

L.D. 
 

5. Prove that every superset of linear dependent set of vectors is 
L.D. 

 
6.  Show that the following vectors in V3(R) are  L.D 
 a) (1, 2, 3) (4, 1, 5) (-4, 6, 2) 
 b) (3, 0,-3) (-1, 1, 2) (4, 2, -2) (2, 1, 1) 
 c) (1, 1, 2, 4) (2, -1, -5, 2) ( 1, -1, -4, 0) (2, 1, 1, 6) 
 
7.  Show that the following vectors in V3 ( R ) are L. I 
 a) {(1, 1, 1) (1, 0, 0) (0, 1, 0) (0, 0, 1)} 
 b)  {(1, 2, -3) (1, -3, 2), (2, -1, 5)}  

c) {(1, 1, -1) (2, -3, 5) (-2, 1, 4)} 
d) {(1, 1, 1) (2, 2, 0) (3, 0, 0)} 
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8. Which of the following set of vector are L.D 
 a)  {(2, -1, 4) (3, 6, 2) (2, 10, -4)} 
 b) {(1, 1, 1) (2, 2, 0) (3, 0, 0)} 
 c) {(1, 3, 3) ( 0, 1, 4) (5, 6, 3) (7, 2, -1)} 
 d) {(1, 2, 1, 2) (3, 2, 3,2) (-1, -3, 0, 4) (0, 4, -1, -3)} 
 e)  {(1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 1) (0, 0, 1, 1)} 
 f)  {(1, 0, 1), (1, 1, 0) (-1, 0, -1)} 

g) {(1, 2, 1) (-1, 1, 0) (5, -1, 2)} 
 
9. Which of the following subset S of the vector space of all real 

valued functions defined over the interval (0, ∞) linear 
independent (L. I) 

 
 1.  S = {x, sinx cosx}   2.  {x, x2, e2x} 
 3.  S = {cosx, sinx, sin(x +1)}  4.  {logx, 2logx, 3logx} 
 5.  S = {cos2x, cos2x, sin2x} 6.  {1, sinx, sin2x} 
 
10.  Which of the following subsets of the vector space of all real 

valued functions defined over the interval (0, ∞) Linearly 
dependent (L.D) 

 a)  {x2 – 4, x + 2, x - 
2

3
x2}  

b) {2 – x + 4x2, 2 + 10x – 4x2, 3 + 6x + 2x2} 
 c)  {1 + 3x + 3x2, x + 4x2, 5 + 6x + 3x2, 7 + 2x – x2} 
 d) {3 + x + x2, 2 – x + 5x2, 4 – 3x2} 
 c)  {2x3 + x2 + x +1, x3 + 3x2 + x – 2,  x3 + 2x2 – x + 3} 

 
Answers 

 
1.  (1, -2, 5) = -6(1, 1, 1) + 3(1, 2, 3) – (2, -1, 1) 
3. (1, 7 -4) = -3α1 + 2α2 
4.  No. 6.  a) K = -8 b) K = -8 
 
8.  a, b, e, g – independent ;   c, d, f – L. D 

9.  (1)  (2),  - L. I  10)  a   c) -  L.D.. 
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1.08 : Basis  and Dimension  

 Definition :  Let V be a  vector space over a field F . A subset B of 
V is called  a basis  of V  if  (i) B is linearly independent and 

           (ii) B spans V. 

 Definition : A vector space V is said tobe finite dimensional if it has 
a finite basis. 

 Definition : The dimension of a finite dimensional vector  space V 
over a field F is the  number of elements in a basis of V and is denoted 
by dim V. 

Worked Example : 

(1) The set  S = { (1,0,0),(0,10),(0,0,1)} is a basis of V3( R). 

 Solution : (i) S is linearly independent. 

Consider c1 (1, 0, 0) + c2(0,10) + c3(0, 0, 1) = (0, 0, 0) 

⇒  (c1, c2, c3) = (0, 0, 0)  

⇒   c1 = 0, c2 =  0, c3 = 0  

 ∴ c1 (1, 0, 0 ) + c2(0, 1, 0 ) + c3( 0, 0, 1) =  0    

 ⇒  C1 = 0,  C2 =  0,  C3 = 0  

   ∴ S is linearly independent. 

 (ii) S spans V3( R). ie, any vector  (x1, x2, x3) in V3( R). can be 
expressed as a linear combination of  (1, 0, 0), (0, 1, 0), (0, 0, 1) . 

   (x1,,x2, x3)  = x1 (1, 0, 0) + x2(0, 1, 0) + x3(0, 0,1) 
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 Hence S is a basis  of  V3( R).  

  These vectors are denoted by e1, e2, e3  repectively and are 
called standard basis vectors and S is called the standard basis. 

  Since the basis contains 3 elements ,the vector space is finite 
dimensional and Dim V = 3 

(2)  Determine whether the set S  = {(2,1),(1,-2),(1,0)} is a basis of 
R2 .       ( M O2 )  

 Solution : Consider c1(2,1)+c2(1,-2)+c3(1,0)  = (0,0) 

                       ⇒  (2c1+ c2+ c3, c1-2c2 ) = (0,0) 

                        ⇒   2c1+ c2+ c3 = 0 c1-2c2 = 0 

                        ⇒        2c1+ c2  =  - c3 c1-2c2 = 0 

                        ⇒  c1 = 3 3
2

2
,

5 5

c c
c and

− −=  c3 is arbitrary. 

                    ∴ S is not linearly independent . 

                    Hence S is not a basis  of R2. 

(3)  Show that the infinite set S = {1, x,x2,………..xn ,……} is a 
basis of the  vector space F [x] of all polynomials over the field F. 

Solution : (i) In order to show that S is LI:, we have to show that 
every finite subset of S is L.I. 

 Let T = { xm1,xm2, ………..xmr } be an arbitrary finite subset 
of S, so that each m1 is a non – negative integer. 

 For any scalars a1,a2,……………….ar we have  

 a1x
m1+a2x

m2+……………….+arx
mr = 0  
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 ⇒a1= 0, a2 = 0,…….ar =  0 

 since by equality of polynomials,  the coefficients are 0. 

 This proves that S is L.I. 

 If f(x) is an arbitrary member of F [x] of all polynomials,then 
we can write  

 f(x) = a0.1+ a1x + a2x
2 + ………….+ amxm. 

i.e., f(x) can be expressed as a  linear conbination of a finite number of 
elements of S. 

 ∴S spans F[x] . 

 ∴S is a basis of F[x]. 

Note  :       (a) The vector space F[x] has no finite basis . 

      (b) F[x] is an infinite dimensional vector space. 

Theorem on basis and dimension 

Theorem 1:  Any two bases of a finite dimensional  vector space V  
have the same finite number of elements. 

Proof  :  Let V  be a finite dimensional vector space over a field F. 

          Let S={α 1,α 2,……..α n}and T = {β 1, β 2,…… β n} be 
two bases of V. 

We have to prove that n = m. 

Since S is a basis ,S  spans V. 

Since  T is a basis ,T is linearly independent. 
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    ∴(by Theorem 6 on linearly independent vectors of section 2.07)
 m≤ n                                 ………………(1) 

Similarly ,since  S is a basis ,S is L.I 

and since T is a basis ,T  spans  V. 

∴ (by  the  same theorem 6) n ≤ m            ………(2) 

from (1) and (2), m= n. 

Theorem 2 : In an n-dimensional vector  space V, 

(i) any ( n + 1) elements of V are linearly dependent. 

(ii)   none of the  set of ( n- 1) elements can span V 

Proof : (i) Let S = { α 1, α 2,………… α n} be a basis  of an n 
dimensional vector  space V. 

Let T be any set consisting of  ( n+1) elements . 

Since S is a basis ,it spans V. 

If T is linearly independent , then we must have the  number of 
elements in T less than or equal to the number of elements in S. 

But  T has more elements  i.e,( n +1)  than in S (i.e,n) 

∴T  is linearly dependent . 

∴any  ( n + 1) elements of V are linearly dependent. 

(ii)  Let S  = { α 1, α 2,………… α n} be a basis of V. 

Let T be any set containing  ( n- 1) elements. 

           Since S is a basis ,it is  linearly independent. 
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           If T generates the entire space V, then the set T must contain 
more or equal number of vectors than in S. But has (n-1) which is < n 
elements .  

Hence  T cannot span V. 

∴ No set  of (n-1) elements can span V. 

Theorem 3 : Any linearly independent set of elements of a finite 
dimensional vector space V is a part of a basis. 

Proof : Let S= {α 1, α 2,………… α k}  be a linearly independent 
subset of  an  n    dimensional vector space V. 

Now we shall determine vectors α k+1, α k+2,……… α n  

Such that { α 1, α 2,………α k,  α k+1, ,…… α n}  is a basis of V. 

Clearly  k ≤  n. 

 If  k = n ,then clearly S is a basis of V, since any linearly 
independent subset of V is a basis  of V. 

If  k < n , then S is not a basis of V. 

Let T be the  subspace spanned by the vectors of S. 

Since  S is linearly independent, we have T ≠  V. 

i.e, T is a proper subset of V. 

∴ there exists a non zero vector α k+1 ∈V such that α k+1∉  T. 

∴The set {α 1, α 2,………… α k,  α k+1} is linearly  independent. 

If  k +1 = n then { α 1, α 2,………… α k,  α k+1} is a basis of V. 
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If  k + 1 ≠  n, we repeat the above process till we get n linearly 
independent vectors α 1, α 2,………α k, α k+1, ,……… α n which form 
a basis of V. 

Theorem 4:  For n vector of n dimensional vector space V to be a 
basis, it is sufficient that they span V or that they are 
linearly  independent. 

Proof  : Let  S = {α 1, α 2,………… α n} span V. 

∴ there exists a linearly independent  subset  T of S which also spans V    

 ∴ T is a basis . 

Since dim V = n ,the number of elements in T is n. 

But T is a subset of S which also has n elements. 

∴ T = S and hence S is a basis of V. 
 Secondly if S is  linearly  independent, then it is a part of a basis 
(by theorem 3) and this basis has n elements (Qdim V = n )  and hence 
S itself is a basis. 

 
Theorem  5 :  Let A be any m×  n matrix which is equivalent to 

a row reduced echelon matrix E. Then the non-
zero rows of  E form a basis of the subspace 
spanned by the rows of A. 

 
Proof  : Since E is the echelon form of A, it follows that the non-
zero rows of E are linearly independent, and hence form a basis of 
the subspace spanned by the  rows of E. 
 
 Since A and E are equivalent, the rows of A and E generate 
the same subspace. 
 
∴ the non-zero rows of E form a basis of the subspace spanned by 
the rows of A. 
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Note : (i) Since the dimension of a vector space is the  number of 

elements in a  basis, the number of non –zero rows in E is 
the dimension of the subspace spanned by the rows of A. 

 
 (ii) Since the rank of a matrix is the number of non-zero 

rows, the dimension of the  subspace spanned by the rows 
of A is equal  to the rank of A. 

  
  (iii) To find  the basis  and the dimension of a  subspace 

spanned the vectors, reduce the matrix whose rows are the 
given vectors to echelon form. 

 
 Worked  Examples : 
 
1.  Determine whether the set of vectors 

 {(1, 2, 3) (-2, 1, 3), (3, 1,0) } is a basis of R3. (N 2002 ) 

Solution : Consider 

1 2 3

2 1 3

3 1 0

−  

  = 1(0 - 3) -2 (0 - 9) + 3( -2 -3 

  = -3 + 18 – 15 = 0 

∴ The vectors are L.D 

∴ It is not a basis of R3 

2.   Define basis and dimension of a vector space.  Determine the 

basis of the subspace spanned by the vectors 

 
1 5 1 1 2 4 1 7

, , ,
4 2 1 5 5 7 5 1

 − − −        
        − − − −        

 

Solution  :  Let S be the above set.  S = {A, B, C, D} 
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3 1

3 1

4 1

1 5 4 2 1 5 4 2

1 1 1 5 0 6 3 3
2

2 4 5 7 0 6 3 3

1 7 5 1 0 2 1 1

R R

R R

R R

− − − −   
−   −    −

   − −
−   − − − − −   

�  

3 1

4 2

1 5 4 2

0 6 3 3
1

0 0 0 0
3

0 0 0 0

R R

R R

− − 
− 

 
  +
 
 

�  

The final matrix has two non-zero rows 

 ∴ Subspace is 
1 5 0 6

,
4 2 3 3

 −    
    −    

 

 ∴ Dimension of the subspace  = 2 

3.  Find the basis and dimension of the subspace spanned by the 

vectors (1, 2, 0), (1, 1, 1) (2, 0, 1) of the vector space V3(z3) 

where z3 is the field of integer modulo 3. 

Solution : Let      S = {(1, 2, 0), (1, 1,1) , (2, 0, 1)} 

 Consider A = 

1 2 0 1 2 0

1 1 1 0 1 1

2 0 1 0 4 1

   
   −   
   −   

�   

A  = 1(1-0) – 2(1 - 2) + 0 

 = 1 + 2 = 0  under + mod 3. 

∴ S is linearly dependent set. 

To find the subspace of A 
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2 3 1

3 3 1

1 2 0 1 2 0
2

1 1 1 0 2 1

2 0 1 0 2 1

R R

R R

   
+   

    +
      

�  

3 1

1 2 0

0 2 1 2

0 0 0

R R

 
  + 
  

�  

 In the final matrix has two non zero  rows.         

∴ subspace is  ( )( ){ }1, 2,3 0, 1,1− −    

Dimension of the subspace  =  2       

∴ S is linearly dependent set.   

To find the subspace of A   

2 3 1

3 3 1

1 2 0 1 2 0
2

1 1 1 0 2 1

2 0 1 0 2 1

R R

R R

   
+   

    +
      

  

     3 1

1 2 0

0 2 1 2

0 0 0

R R

 
  + 
  

   

In the final matrix has two non zero rows.  Thus the subspace  

Is ( ) ( ){ }1,2,0 , 0,2,1  and its dim = 2.   

4.  Find the dimension and basis of the subspace spanned by the 

vectors  {(2, 4, 2) (1 , -1, 0) (1, 2, 1), (0, 3, 1)} in V 3( R )      

      (M 02, M 2000) 

Solution : Let S be the given set.  D[V3( R )] = 3 
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 Any subset of V3( R ) containing more than 3 vector are L.D. 

 Consider 1

2 4 2 1 2 1

1 1 0 1 1 0 1

1 2 1 1 2 1 2

0 3 1 0 3 1

R

   
   − −   
   
   
   

�  

.          2 1 3 1

1 2 1

0 3 1

0 0 0

0 3 1

R R R R

 
 − −  − −
 
 
 

�  

          4 2

1 2 1

0 3 1

0 0 0

0 0 0

R R

 
 − −  +
 
 
 

�  

In the last  matrix has two non zero rows  

∴ Subspace is S1 = {(1, 2, 1) (0, -3, -1)} 

The dimension of the subspace S1 ie d(S1) = 2. 

 

5.   Define basis and dimension of a vector space.  Find basis and       

     dimension of subspace of V3 ( R ) spanned by  

{(1 , -2, 3) ( 1, -3, 4) (-1, 1, -2)}  (N 02) (M 01) 

Solution :   Consider A = 

1 2 3

1 3 4

1 1 2

− 
 − 
 − − 

 

 A  = 1( 6 – 4 ) + 2 ( -2 + 4 ) + 3 ( 1 – 3) 
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  =  2 + 4 – 6 = 0 

∴ Given set is L.D 

∴ It is not a basis of V3(R). 

 To find the dimension and basis of the subspace of S 

Consider A =  2 1

3 1

1 2 3 1 2 3

1 3 4 0 1 1

1 1 2 0 1 1

R R

R R

− −   
−   − −    −

   − − −   

�  

     3 2

1 2 3

0 1 1

0 0 0

R R

− 
 − − 
  

�  

 The final matrix has two non-zero rows  

 ∴ Subspace is {(1, 2,, 3) (0, -1, 1)} 

 Dimension of the subspace = 2. 

6.  Prove that ( ) ( )( ){ }1,2,1 , 3,4, 7 3,1,5−   is a basis of 3( )V R     

Solution :  Let   

1 2 1

3 4 7

3 1 5

A

 
 = − 
  

              〈 N 2001 〉   

           2 1

3 1

1 2 1
3

0 2 10
3

0 5 2

R R

R R

 
− − −  −

 − 

      

    ( )1 4 50 0.A = − − ≠   

∴ It is L.I.   ∴  It is a basis of 3( )V R      
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7.  Define basis and dimension of a vector space.  Examine 

whether the set of vectors ( ) ( ) ( )2,1,0 , 1,1,2 1,2,1and  is a basis 

of the space  3( )V R .    

Solution :  Define basis and dimension.    

 Consider      

1 1 2

2 1 0

1 2 1

A

− 
 =  
  

     

 ( ) ( ) ( )1 1 0 1 2 0 2 4 1A = − + − + −        

      1 2 6 0= + + ≠       

∴ Given set of vectors are  L. I.    

 It is a basis of  3( )V R      

 
(8) Show  that the vectors ( 1,0,-1), (1,2,1),  (0,-3,2)  form a 
basis of V3( R )  
 
Solution :  Let α  = ( 1,0,-1) β  = (1,2,1) γ  = (0,-3,2) 

 Consider 

1 0 1

1 2 1

0 3 2

−

−
 = 1(4 + 3 ) –1, (-3, -0) = 7 + 3 = 10 ≠ 0 

∴ The  set { }, ,α β γ  is L.I 

 Any   vector (x1,x2,x3)  in V3( R ) can be expressed as a linear 
combination of , ,α β γ  . 

Let ( x1, x2, x3) = a  =  ( 1,0,-1) +b (1,2,1) + c (0,-3,2) 

                              =  ( a + b ,2b – 3c, -a + b  +2c) 
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∴ a + b = x1 , 2b – 3c =  x2    -a + b  +2c = x3. 

Adding first and third equations,we get 2b+2c = x1+ x3. 

Now               2b+2c = x1+ x3    

                       2b – 3c =  x2     

subtracting  5c = x1+ x3-  x2   

      ∴ c = 1 3 2

5

x x x+ −
 

  2b – 3c =  x2     

( )1 3 2
2

3
2

5

x x x
b x

+ −
∴ − =  

or 10b  = 5x2 + 3(x1+ x3-  x2  )  

  = 2x2 + 3x1+ 3x3. 

2 1 32 3 3

10

x x x
b

+ +∴ =  

Now  a + b  = x1 

i.e,  a = x1 -   2 1 32 3 3

10

X x x+ +
  

    = 1 2 1 310 2 3 3

10

x x x x− − −
 

  a = 1 27 2 3

10

x x x− −
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Hence (x1, x2, x3) can be  expressed as a linear cobination . Hence 

{ }, ,α β γ  spans V3R.    ∴ { }, ,α β γ is a basis of    V3(R). 

9.  Determine  a basis  of a subspace  spanned by the vectors  

 ( 2,-3, 1),(3,0,1),( 0,2,1), (1,1,1) of V3 R. 

Solution :   Let S = { ( 2,-3, 1),(3,0,1),( 0,2,1), (1,1,1) }  

S contain 4 elements and dim  V3 R. = 3 

∴ S is linearly  dependent. 

Now consider the matrix of vectors 

2 3 1

3 0 1

0 2 1

1 1 1

A

− 
 
 =
 
 
 

 

Let us reduce A to echelon form using elementary row transformations. 

1 4

1 1 1

3 0 1
( )

0 2 1

2 3 1

A R R

 
 
  ↔
 
 − 

�  

1 1 1

0 3 2

0 2 1

2 5 1

 
 − − 
 
 − − 

�  (R2 – 3R1) and (R4 – 2 R1) 
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1 1 1

0 3 2

0 6 3

0 15 3

 
 − − 
 
 − − 

�  3 (R2 ) and 3(R4) 

1 1 1

0 3 2

0 0 1

0 0 7

 
 − − 
 −
 
 

�  (R3 + 2R2) and (R4 – 5 R2) 

1 1 1

0 3 2

0 0 1

0 0 0

 
 − − 
 −
 
 

�  R4 + 7R2. 

1 1 1

0 1 2 / 3 1

0 0 1 3

0 0 0

 
 

   −    
 
 

�  R2 and (-1) R3. 

This  is in the echelon form . There are 3 non-zero rows. 

 ∴ Corresponding to these nonzero rows the vector are (1,1,1), 
(3,0,1), ( 0,2,1) and these form a basis of the subspace  spanned by S. 

 ∴ Basis is  (1,1,1)  ,(3,0,1),( 0,2,1) and basis has 3 elements 
and hence dimension of the subspace is 3. 

10. Show that the vectors (1.i.0),(2i,1,1),(0,1+ I,1-i ) form a basis of 
V3(c)  
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Solution :  Let S= { (1, i ,0) ,(2i,1,1),(0,1+i, 1-i ) } 

Consider the matrix of the vectors 

A=

1 0

2 1 1

0 1 1

i

i

i i

 
 
 
 + − 

 

2 1

1 0

0 3 1 2 ( )

0 1 1

i

R i R

i i

 
  − 
 + − 

�  

3

1 0

0 3 1 3( )

0 3(1 ) 3(1 )

i

R

i i

 
 
 
 + − 

�  

3 2

1 0

0 3 1 (1 )

0 0 2 4

i

R i R

i

 
  − + 
 − 

�  

2

1 0

1 1
0 1 ( )

3 3
0 0 1

i

R

 
 
 
 
 
 

�   and  3

1
( )

2 4
R

i−
 

This is in  the echelon form . There are three non-zero rows. 

∴ These non-zero rows determine the basis. 

Corresponding to these, the vectors are (1, i, 0), (2i,1,1),  (0,1+i, 1-i )} 
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These form the basis of V3(c) and hence the dimension of V3(c) is 3. 

11.  In a vector space V3( R),    let α  = (1, 2, 1) , β  = ( 3, 1,5 ),            

γ  = (-1, 3, -3).  Prove that the subspace spanned by {α β }   and        

{  α , β , γ } are the same . 

Solution : Consider the matrix  

A= 

1 2 1

3 1 5

1 3 3

 
 
 
 − − 

 

Det A =  

1 2 1

3 1 5

1 3 3

 
 
 
 − − 

 = 1(-3 –15 ) –2 (-9 + 5) + 1( 9 + 1) 

       = -18 + 8 + 10 = 0  

∴ The set S = { }, ,α β γ  is L.D 

∴ It has a subset which spans the same subspace as the given set of 
vectors. 

Now 

1 2 1

0 5 2

0 5 2

A

 
 − 
 − 

� (R2 – 3R1) and (R3 + R1) 
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1 2 1

0 5 2

0 0 0

 
 − 
  

� (R3 + R2) 2

1 2 1

2 1
0 1 ( )

5 5
0 0 0

R

 
  −  −  
   
 
 

�  

This is in the echelon form .There are two non-zero rows. 

Corresponding to these non-zero rows,the vectors are 

α = (1,2,1) and β  = (3,1,5) . 

∴{ α β } and {  α , β , γ } span the same subspace. 

12.  Show that S = 
1 0 0 1 0 0 0 0

, , ,
0 0 0 0 1 0 0 1

S
        

=         
        

 form a 

basis of the vector space M2® of 2 x 2 matrices.  Find its dimension. 

Solution :  Let 2( )
a b

M R
c d

 
∈ 

 
 

Let  
1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

a b
a b c d

c d

         
= + + +         

         
 

∴ S spans M2® 

and 1 2 3 4

1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0
C C C C
         

+ + + =         
         

 

1 2

3 4

0 0

0 0

C C

C C

   
⇒ =   

  
 

⇒ C1 = 0, C2 = 0, C3 = 0, C4 = 0. 
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∴ S is L. I 

Hence S is a basis of M2 ( R )  

Since S contains 4 elements, dim [M2 (R ) ] = 4 

13.  Find the dimension and basis of the subspace spanned by         
{(1, 3, 2, 4) , (1, 5, -2, 4), (1, 2, 3, 4), (1, 6, -3, 4) } in V4 (R ). 

Solution : Consider 

1 3 2 4

1 5 2 4

1 2 3 4

1 6 3 4

−

−

 

  2 1 3 1 4 1

1 3 2 4

1 2 4 0
, ,

0 1 1 0

0 3 5 0

R R R R R R
−

= − − −
−

−

 

 

2 4 0

1 1 1 0 0

3 5 0

−
= − =

−
 

∴ The vectors are linearly dependent. 

∴ The four vectors do not form a basis. 

Consider the three vectors {(1, 3, 2, 4), (1, 5, -2, 4), (1, 2, 3, 4)} 

The matrix of the vectors 
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A =

1 3 2 4

1 5 2 4

1 2 3 4

 
 − 
  

 

1 3 2 4

1 2 4 0

0 1 1 0

 
 − 
 − 

�  R2 –R1 and R3 – R1 

2

1 3 2 4
1

0 1 2 0 ( )
2

0 1 1 0

R

 
 − 
 − 

�   

1 3 2 4 1 3 2 4

0 1 2 0 0 1 2 0

0 0 1 0 0 0 1 0

   
   − −   
   −   

� �  

This is in the echelon form and there are three non-zero rows. 

∴ The three vectors corresponding to these three non-zero rows are (1, 
3, 2, 4), (1, 5, -2, 4), (1, 2, 3, 4).  They form a basis of V4 (R ) and dim 
[V 4 ( R )] = 3 

14.   Determine the dimension and basis for the solution space of the 
system   x + y + z = 0 ,3x + 2y –2z = 0, 4x + 3y – z = 0, 6x  + 5y + z= 0. 

 Solution :         x + y + z = 0                      --------(1) 

                         3x + 2y –2z = 0            ----------(2) 

                     4x + 3y – z = 0                      -------(3)     

6x  + 5y + z= 0               --------(4) 
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 (1) ×  3 – (2) ⇒  y + 5z = 0                     -------------(5) 

 (1) ×  4  - (3) ⇒  y + 5z = 0                   --------------(6) 

  (1) ×6   - ( 4) ⇒  y + 5z = 0                   ------------(7) 

 ∴ (5) or (6) or(7) ⇒ y = -5z 

∴  (1) ⇒  x = 4z 

∴If z = k,x = 4k, y = - 5 k. 

∴
4 4

5 5

1

x k

y k k

z k

     
     = − = −     
          

 

∴Basis  = { ( 4, -5,1) } 

∴Dimension = 1  

15.  Extend the linearly dependent set    { (0,1,2) ,(3,2,1)} to a basis 
of R3. 

Solution :  Let    S = { (0,1,2) ,(3,2,1)}  

                    (0,1,2) = a (3,2,1)  

                                = (3a ,2a,a) 

             ∴ 3a = 0, 2a = 1 , a = 2  

             These equation are inconsistent  

∴ It is not possible to express (0,1,2) as a (3,2,1) 

∴S is L.I 
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Include the vector (1,0,0) to S . 

Consider the matrix of the vectors. 

1 0 0

0 1 2

3 2 1

A

 
 =  
  

  

3 1

1 0 0

0 1 2 3

0 2 1

R R

 
  − 
  

�  

3 2

1 0 0

0 1 2 2

0 0 3

R R

 
  − 
 − 

�  

3

1 0 0
1

0 1 2
3

0 0 1

R

 
   −    

  

�  

This is in the echelon form .  There are three non-zero rows in this  

∴ The non-zero rows form a basis , corresponding to these non-zero 
rows, the vectors are   ( 1,0,0) ,90,1,2) ,(3,2,1) 

∴{ ( 1,0,0) ,(0,1,2) ,(3,2,1)} is a basis of  R3 and its dimension = 3. 

                                      EXERCISE 

(1) Verify whether the following sets of vectors form bases of V2( 
R) or V3(R).  If not, find a basis and the dimension of the 
subspaces spanned by these vectors. 
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(i) { (2,1), (3,0),}   (ii) { ( 4,1), (-7,-8) } 

 (iii) {( 0,0), (1,3),}   (iv){(3,9), ( -4,-12)} 

(v) {( 2,1), (1,-1), (0, 2)} (vi){( 1,2,3), (-2,1,3), (3,1,0)} 

(vii) {(3,1,-4), (2,5,6), (1,4,8)}, 

(viii) {(2,-3,1), (4,1,1), (0,-7,1)} 

(ix) {( 1,-1.0), (0,31), (1,2,1), (2,4,2)} 

(x) {(1,6,4), (2,4,-1), (-1,2,5)},  

(xi) { ( 1,2,2,1),(0,2,0,1)(1,-2,2,-1)} 

(xiii) { ( 1,3,2,4), (1,5,-2.4), (1,2,3,4), ( 1,6,-3,4)} 

(2) Which of the following sets of vectors are bases of the vector 
space of polynomials : 

(i) { 1- 3x + 2x2,1 + x +4x2,1- 7x}in p2 

(ii)   { X,X
3 – x,x4+  x2, x + x 2+ x4+

1

2
} in p 4  

(iii)  { 4 + 6x + x2 ,-1 + 4x + 2x2 , 5 + 2x- x2} in P2 

(iv)  {1 + x + x2, x + x2 ,x2} in P2
 

(v) {-4 + x + 3x2, 6 + 5x + 2x2,  8 + 4x + x2 } in P2 

(3) Determine the dimension and basis of the solution space of the 
system of equations : 

(i) x + y – z = 0,-2x + y + 2z = 0 ,-x + z = 0 
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(ii)  2x + y + 3z = 0,x + 5z = 0,y + z = 0            (M 02) 

(iii)  x – 3y + 2z = 0, 2x –6y + 2z = 0 ,3x –9y + 3z = 0 

(iv) x –4y + 3z –w = 0 , x-8y + 6z-2w = 0. 

(4) Which of the following set of vectors  is a basis of the 
space of  all 2 ×2  matrices over R. 

(i) 
3 6 0 1 0 8 1 0

3 6 1 0 12 4 1 2

 − −       
        − − − − −        

 

(ii)  
1 0 0 1 1 0 0 0

0 1 1 0 0 1 1 0

 −    
     −     

 

(iii) 
2 1 1 2 0 5 3 1

4 3 2 2 0 1 1 2

 −       
        − − −        

 

(iv) 
0 0 1 1 1 0 0 1

1 1 0 0 1 0 0 1

     
     
     

 

(v) 
1 5 1 1 2 4 1 7

4 2 1 5 5 7 5 1

 − − −    
     − − − −     

 

(5) Let be the space spanned by  α  = cos2x,  β  = sin 2 x,        

γ  = cos 2x. Is { α , β ,γ } a basis of W ?  If not , find a basis and 
dimension. 

                                       Answers 

(1)  (i) Basis   (ii) basis 

(iii) not a basis ;Basis   { (1,3) } ; dim = 1              
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(iv)  not a basis ;Basis  { (1,3) } ; dim = 1               

(v)  not a basis ;Basis  { ( 2,1),(1-1)};  dim = 2 

(vi)  Basis                       

 (vii)  basis ;Basis   {( 1,2,3) (3,1,0)} ;  dim = 2           

 (viii) not a basis ;Basis   { ( 2,-3,1), (4,1,1) }; dim  =2  

 (ix)  not a basis ;Basis   { ( 2,4,2),(1,-1,0)} ; dim = 2 

(x)  not a basis ;Basis   { (1,6,4),(2,4,-1) };  dim  = 2 

(xi)  not a basis ;Basis   {( 1,2,2,1),(0,2,0,1)}; dim = 2 

(xii)  not a basis; Basis {( 1,3,2,4),(1,5,-2,4), (1,2,3,4)};  
 dim = 3 

(2)  (i) not a basis  (ii) basis  (iii) not a basis  

(iv) basis  (v) basis   

(3)   (i) Basis = {(1,0,1)}; dim = 1 

 (ii) has no basis ; dim= 0  

 (iii) Basis = {( 3,1,0) ,(-10,1)}; dim = 2 

(iv) Basis = {( 4,1,0,0), (-3,0,1,0), (1,0,0,1)};dim = 3 

(4) (i) Basis,  (ii) asis,  (iii) not a basis, 

(iv) Basis  (v) not a basis. 

(5) not a basis ; any two of α , β ,γ  form a basis; dim = 2 
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1.09 Linear Transformations 

In this section ,we study mapping from one vector  space into another 
vector space . 

Definition : Let U and V be two vector spaces over a field F. Then the 
mapping T:U →V is said to be a linear transformation if 

(i) T (α + β ) =  T (α ) + T (β ) , Uα β∀ ∈  

and  (ii)       T (c.α ) = c.T (α ) , c F∀ ∈  and Uα ∈ . 

Definition : Let  U be vector  space over a field  F. Then the linear 
transformation T : U →  U is called a linear map on u 

Note : (1) In the linear transformation , u and v are vector spaces over 
the same field F. 

(2) In the condition the + sign on the LHS is the +  of the 
vector space u and + sign on the RHS is the + of the vector  
space V. similarly the scalar  multiplication on the  LHS is the 
scalar multiplication of u and that on the RHS is the scalar 
multiplication of  v. 

 Worked Examples :     

(1)  T: V2 ( R ) →  V2 ( R ) is defined` by  

 T (x,y) = ( 3x + 2y ,3x –4y).verify whether T is a linear 
transformation. 

 Solution : α  = (x1,, y1) ,β  = ( x2, y2)  

             ∴ α + β  = (x1+ x2, y1 + y2)  

∴ T (α + β ) = T (x1+ x2, y1 + y2)  
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                       = (3(x1+ x2, ) + 2 ( y1 + y2), 

    3(x1+ x2, )- 4 ( y1 + y2)) 

                      = (3x + 2y1,3x1 –4y1) + ( 3x2 + 2y2, 3x2- 4y2)  

                      = T (x1,y1) + T ( x2,y2) 

                      = T (α ) + T(β ) 

and cα = c = (x1,, y1)= (cx1 ,c,y1) 

∴ T (cα ) = T (cx1, cy1) 

 = ( 3 (cx1) + 2 (c,x1),  3(cx1)-4 (cy1) 

  = (c (3x1 + 2y1), c (3x1 – 4y1)) 

 = c (3x1 + 2y1, 3x1 – 4y1) 

  = cT (x1,, y1) 

  = cT (c α )  

∴ T : V2 (R )  →   V2 (R )   is a L.T . and  hence is a linear map 
on V2 (R )   

(2) Define T: R3
   →  R3 by T (x,y,z) = 2x + y ,y-z,2y + 4z). Verify 

whether T is a linear transformation. 

Solution : Let α  =  ( x1,y1,z1) ,β = (x2,y2,z2)  

∴ α + β       = (x1+ x2, y1+ y2, z1+ z2) 

 ∴ T (α + β )  =  2(x1+ x2) + (y1+ y2), (y1+ y2) 



       Linear Algebra                                      
 

75

    - ( z1+ z2), 2(y1+ y2) + 4(z1+ z2) 

                      = (2x1+ y1+ 2x2+y2, y1-z1+y2-z2, 2y1+4z1+2y2 + 4z2) 

                     = (2x1+ y1, y1-z1, 2y1+4z1)+ (2x2+y2, y2-z2, 2y2 + 4z2) 

                       = T ( x1,y1,z1)+ T(x2,y2,z2) 

                      = T (α ) + T(β ) 

     cα = c ( x1, y1, z1)  = ( cx1,,cy1, cz1) 

         ∴      T    ( cα ) =  T ( cx1,cy1,cz1) 

                                      = (2(cx1) + (cy1), cy1- cz1,2(cy1)+4(cz1)) 

                                      = (c((2x1+ y1, y1-z1, 2y1+4z1) 

                                      = cT  ( x1,y1,z1)   

                                      = cT (α ) 

∴ T is a L.T.and hence is a linear map on R3. 

(3) T: V1(R ) →  V3(R ) is defined by T(x) = (X,2X2,X3) . verify 
whether T is a linear transformation.      ( M 02 ) 

Solution : Let α = x , β  = y 

   ∴ T (α + β ) = T( x +y ) 

ie,  T (α + β ) = (x +y,2(x +y)2,( x +y)3)…………(1) 

         T(α )+T( β ) = T (x) + T(y)  

                               =  (x,2x2,x3)+(y,2y2,y3) 
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ie,     T(α )+T( β ) = (x +y,2(x2 +y2) x3 +y3) ………….(2) 

From (1) and (2 ) ,it is clear that 

T (α + β ) ≠  T(α )+T( β ) 

Hence T is not a linear transformation. 

Note :  Powers of a variable can not form L.T. 

(4)  Define a mapping T : V3(F ) →  V2(F ) by T (a1,a2,a3) = 
(a2,a3).  Verify whether T is a linear transformation. 

  Solution : Let α = (a1,a2,a3) ,  β  = (b1,b2,b3) 

     (α + β ) = ( a1+b1,a2+b2,a3+b3) 

  T (α + β )   = T( a1+b1,a2+b2,a3+b3) 

 = (a2+b2,a3+b3) 

            = (a2,a3) + (b2,b3) 

= T (a1,a2,a3) + T(b1,b2,b3) 

              = T(α )+T( β ) 

  cα    = c (a1,a2,a3) = (ca1, ca2,ca3) 

T( cα )  = T (ca1,ca2, ca3) 

= (ca2, ca3) 

              = c (a2, a3) 

              = cT (a1, a2, a3)    =  cT (α ) 
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 ∴ T is a linear transformation. 

(5)   Define the mapping T : V2(R ) →  V2(R ) by T (x,y) =      
(xcosθ - ysinθ ,xsinθ  + ycosθ ). Verify whether T is a linear 
transformation. 

Solution : Letα = (x1,y1) ,   β = (x2,y2) 

T (α + β ) = T (x1+ x2, y1+ y2) 

= ((x1+ x2)cosθ - (y1+ y2) sinθ , ( x1+ x2) sinθ  

+ (y1+ y2) cosθ ) 

= (x1 cosθ - y1 sinθ , x1sinθ + y1 cosθ ) 

       + (x2 cosθ - y2 sinθ , x2sinθ + y2 cosθ ) 

   = T (x1,y1) + T (x2,y2) 

= T (α )+T( β ) 

T( cα )  = T (cx1,cy1) 

                =  [(cx1 cosθ - cy1 sinθ , cx1sinθ + cy1 cosθ )] 

                = ( c(x1 cosθ - y1 sinθ ), c (x1sinθ + y1 cosθ ) 

                = c (x1 cosθ - y1 sinθ , x1sinθ + y1 cosθ ) 

                = cT (α ) 

∴ T is a linear transformation and hence is a linear map 
on V2(R ) 

(6) Let M(R )  be the vector space of all 2×2 matrices 
over R and B be a fixed non-zero element of M( R) . 
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show that the mapping T: M( R) →  M( R)  defined by 
T(A) = AB+BA, ∀ A∈  M( R) , is a linear 
transformation . 

Solution : Let A,C ∈  M( R) be any arbitrary elements. 

T (A+C)   = (A+C) B+B(A+C) 

                 = AB + CB +BA + BC 

                 =  ( AB+BA) + (CB+BC) 

                =  T (A) + T(C) 

 Let k∈R 

T (k.A)   = (k. A)B + B(K. A) 

               = k.(AB + BA) 

               = kT(A) 

∴ T is a linear transformation. 
7.  Prove   that   if    3 2: ( ) ( )T V R V R→    is   defined   by     

      ( ) ( ), , 2, 2T x y z x y x= + − +  is a linear transformation   

 ( ) ( ) ( )1 1 1 2 2 2, , , ,T T x y z x y zα β+ = +      

      ( )1 2 1 2 1 2,T x x y y z z= + + +    

     ( )( )1 2 1 2 1 2 1 2 1 2,x x z z y y x x z z= + + + + − + + +  

      ( ) ( )1 1 1 1 1 2 2 2 2 2, ,x z y x z x z y x z= + − + + + − +  

      ( ) ( )T Tα β= +          
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          Also ( ) ( ) [ ], , , ,T c T c x y z T cx cy czα = =       

 ( ) ( ), , ,cx cz cy cx cx cz c x z y x z= + − + = + − +   

 ( )c T α=  

∴ T  is a linear transformation     

8.  Prove that  2 2: ( ) ( )T V R V R→  defined by     

( ) ( ), cos sin , tan cosT x y x y x yθ θ θ θ= + +  is a linear 

transformation.   

Solution :  Let  α  ( x1, y1 )  and  β = ( x2 , y2 )     

T ( c1 α +c2 β )  ( ) ( )1 1 1 2 2 2, ,T c x y c x y= +        

       [ ]1 1 2 2 1 1 2 2,T c x c x c y c y= + +    

( ) ( )1 1 1 2 2 2cos sin cos sin ,c x y c x yθ θ θ θ= + + +  

( ) ( )1 1 1 2 2 2tan cos tan cosc x y c x yθ θ θ θ+ + +   

 ( )1 1 1 1 1cos sin , tan cosc x y x yθ θ θ θ= + +    

                    ( )2 2 2 2 2cos sin , tan cotc x y x yθ θ θ θ+ +  

( ) ( )1 1 1 2 2 2, , .c T x y c T x y= +  

∴ T is linear transformation.   

Note :  The above problem can also be done using   

 T( ) ( ) ( ) ( ) ( ). .T T and T c cTα β α β α α+ = + =   

9.  Verify whether  3 2:T R R→  defined by      
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( ) ( ), , 2 3 , 1T x y z x y y z= + + +  is a linear transformation.       

( A 2004 )   

Solution :  Let ( ) ( )1 1 1 2 2 2, ,x y z x y zα β= =            

( ) [ ]1 2 1 2 1 2( , ,T T x x y y z zα β+ = + + +                 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2[2 3 , 1]x x y y y y z z= + + + + + + +    

≠ [ ] [ ]1 1 1 1 2 2 2 22 3 , 1 2 3 , 1x y y z x y y z+ + + + + + +  

∴ T is not linear transformation.        

Note :  when a constant is present, it cannot form L.T. 

10.  Prove that 3 2T R R= →  defined by   

( ) ( ), , , 2T x y z x y y z= + +  is a linear transformation 

  ( N 2004 ) 

Solution :  Let  ( ) ( )1 1 1 2 2 2, , , , ,x y z x y zβ∝ = =         

[ ] ( ) ( )1 2 1 1 1 1 2 2 2 2, , , ,T c c T c x y z c x y zα β+ = +       

 [ ]1 1 2 2 1 1 2 2 1 1 2 2, ,T c x c x c y c y c z c z= + + +    

( )1 1 2 2 1 1 2 2 1 1 1 2 1 1 2 2, 2c x c x c y c y c y c y c z c z= + + + + + +    

( ) ( )1 1 1 1 1 1 1 1 2 2 2 2, 2 ,c x c y c y c z x y y z zβ β β β= + + + + +  

[ ] [ ]1 1 1 1 1 2 2 2 2 2 2 2 2 2, 2 ,c x y y z c c x c y c y c z= + + + + +  

( ) ( )1 2c T c Tα β= +  

∴ T  is a linear transformation.      
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1.10 properties of linear transformation.: 

Theorem 1:  If T : U →V is a linear transformation, then 

(i) T(0) = 0′ where 0 and 0′  zero vectors of U and V 
respectively. 

(ii)  T(-α ) = -T (α ) , Uα∀ ∈  

(iii)  T(C1α 1+C2α 2+….+Cnα n) 

          = C1T(α 1)+C2T(α 2)+….+ CnT(α n) 

Proof :  

(i) Uα∀ ∈  

T (α +0) = T(α ) + T(0) since T is a L.T. 

     ⇒T(α ) = T (α ) + T(0) 

   ⇒  T (α ) + 0’ = T (α ) + T (0) 

 ⇒  0’= T (0)           (by left cancellation law in V) 

 ⇒   T(0) = 0’ 

 (ii)  T (α +(-α )) = T(α ) + T(-α ) since T is linear. 

        i.e    T(0)  =  T (α ) + T (-α ) 

        i.e., 0            = T(α ) + T(-α ) Q  T (0) = 0’ 

  Similarly       0’ = T (-α ) + T(α ) 

∴ T (-α ) is the additive inverse of T(α ) 

i.e., T (-α ) = -T(α ) 
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(iii)  Let us prove this result by Mathematical induction. 

Let P(n) : T (C1α 1 + C2α 2+……….+Cnα n) 

 =  C1T(α 1) + C2T(α 2)+……….+CnT(α n). 

If n =1 , P(1) = T (C1α 1 ) =  C1T(α 1)  

 Since T is linear , P(1) is true. 

Let   n = m, P(m) : T (C1α 1 + C2α 2+………+Cmα m) 

 = C1T(α 1) + C2T(α 2)+……….+CmT(α m).     

We have to show that P(m+1) is true 

T(C1α 1 + C2α 2+……….+Cm+1α m+1) 

= T (C1α 1 + C2α 2+……….+Cmα m) + T (Cm+1α m+1) 

  = C1T(α 1) + C2T(α 2) + ………. + CmT(α m) 

+ Cm+1T(α m+1) 

∴ P(m+1)  is true. 

Since P(1) is true and P(m) is true ⇒  P(m+1) is true, by 
mathematical induction, P(n) is true for all positive integers n. 

Theorem 2:  If β 1, β 2,…… β m is any basis of the vector 
space U and α 1, α 2,……α m are any m 
vectors of the vector space V,  then there exists  
one and only one linear transformation            
T : U →  V such that T(β

i
) = α

i  for                       

i  = 1, 2, ……….m. 
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Proof : Let  α ∈  U be any arbitrary vector of U. 

∴ α  = c1 β 1 +c2 β 2,+………. +cm β m for  

  c1, c2,………..cm∈F. 

 Define   T : U →  V by  

  T(α ) = c1α 1 +c2α 2,……… cmα m . 

We shall prove that this is the required L.T. for this we shall show 
that 

(i) T is linear 

(ii)  T( β
i
) = α

i  for i  = 1,2,……….m. 

(iii)  T is unique. 

(i)  Consider α , β ∈  U 

∴ α  = c1 β 1 +c2 β 2,+………. +cm β m 

 β  = d1 β 1 +d2 β 2,+………. +dm β m   

    α + β  = (c1+ d1) β 1 +(c2+ d2) β 2,+……. +(cm+ dm ) β m 

T(α + β ) = T[(c1+ d1) β 1 +(c2+ d2) β 2,+… +(cm+ dm ) β m] 

 = (c1+ d1) α 1, +(c2+ d2) α 2,+……… +(cm+ dm) α m. 

 = c1α 1+d1α 1 +c2α 2+d2α 2, +…… + cmα m.+ dm α m. 

 = (c1α 1+c2α 2,……cmα m ) + (d1α 1+d2α …… dmα m )   

 =T(c1 β 1 +c2 β 2,+…… +cm β m)+ (d1 β 1 +d2 β 2,+…… +dm β m )  
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 = T (α ) + T(β ) 

cα  = c(c1 β 1 +c2 β 2,+………. + cm β m) 

          = cc1 β 1 +cc2 β 2,+………. + ccm β m 

∴ T (cα ) = T (cc1 β 1 + cc2 β 2,+………. + ccm β m)  

        = cc1α 1 + cc2α 2,……… ccmα m  

        = c (c1α 1 + c2α 2,……… +cmα m ) 

         = cT(c1 β 1 + c2 β 2,+………. + cm β m) 

        = cT (α ) 

∴ T is a linear transformation. 

(ii) β i =0.β 1+0.β 2,+……… +0.β
1i−  

   + 1.β 1+0.β
1i+
+…….+0. β m 

∴ T ( )iβ = T(0.β 1 +0.β 2,+………. +0.β
1i−  

   + 1. β 1+0. β
1i+
+…….+0. β m) 

=      1 2 1 10 0 0 1. 0i i mα α α α α− ++ + + + +K K  

 = 0. α  1 +0. α  2,+… +0. α  1i−
+ 1. α α 1+0. 

1i+
+….+0. α m 

        = α i 

∴ T( β
i
) = for i  = 1,2,…….m. 
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(ii) If possible let there be another linear transformation 

S :U →V such that S (β

i

) = α i 

S (α )  = S(c1 β 1 +c2 β 2,+………. + cm β m) 

            = c1S(β 1) +c2S(β 2,)+………. + cmS(β m) 

            = c1α 1 +c2α 2,……… + cmα m 

            = T  (c1 β 1 + c2 β 2,+………. + cmα m) 

           = T (α ) 

∴ S (α )   = T(α ) or any arbitrary vector α ∈U  

∴ S  =  T . Hence L.T is unique. 

 Remark: From this theorem, to determine a linear transformation T 
from U into V,  first  define T on a basis of  U and then extend to the 
remaining elements of U by expressing them as  a linear  combination 
of the basis elements. This is called linear extension of T. we shall 
illustrate this process in the following worked examples. 

Worked examples :  

(1) Find a linear transformation T : V2( R) →  V2( R) such 
that T(1, 2) = (3, 0) and T (2, 1) = (1, 2) 

Solution : Let us express (1, 2) and (2,1) as linear combination of 
the basis vector e1 = (1,0) and e2 = (0,1). 

(1,2) = 1(1,0) + 2 (0,1) = 1e1 + 2 e2 

(2,1) = 2 (1,0) + 1(0,1) = 2e1 + 1e2. 

∴T (e1 + 2 e2) = T (1,2) and T (2e1 + 1e2) = T (2,1) 
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ie, T(e1) + 2T(e2) = (3,0)          …………..(1) 

and 2T(e1)+ T(e2) = (1.2)         …………….(2) 

Solve (1) and (2) for T(e1) and T(e2) 

Multiply (2) by 2 and subtract from (1) 

We get -3 T(e1)  = (3, 0) –(2, 4) 

ie,-          3T(e1) = (1, -4) 

∴ T(e1)   = 
1 4

,
3 3

− 
 
 

 

 From  (2)  T(e2) =  (1,2) -2 T(e1) 

   =  (1,2) –2
1 4

,
3 3

− 
 
 

 

   = 
5 2

,
3 3

− 
 
 

 

Now    T (x,y)   = T [x(1,0) + y(0,1)] 

                       = T[x e1+y e2] 

                        = xT(e1)+y T(e2) 

                                  = x  
1 4

,
3 3

− 
 
 

+y
5 2

,
3 3

− 
 
 

 

                                    = 
5 4 2

,
3 3 3 3

x y x y− + − 
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ie, T(x,y) = 
5 4 2

,
3 3

x y x y− + − 
 
 

is the required linear 

transformation. 

(2) Find a linear transformation T: V3( R) →V2( R) such that 
T (1,0,0) = (-1,0), T (0,1,0) = (1,1),T (0,0,1) = (0,-1) 

Solution : e1= (1,0,0), e2 = (0,1,0), e3 = (0,0,1) 

∴T (e1)  = (-1,0), T(e2) (1,1),T(e3)= (0,-1) 

Now, (x, y, z)  = x(1,0,0)+ y(0,1,0) + z(0,0,1) 

∴T (x,y,z)   = T[x(1,0,0)+y(0,1,0)+z(0,0,1)] 

                         = xT(e1) + yT (e2)+zT(e3) 

                           = x (-1,0)+ y (1,1) + z (0,-1) 

                          =  (-x + y ,y-z) 

ie,  T(x,y,z)       = ( y-x,y-z) 

(3) Find a linear transformation T:R2→R3 such that  

T (-1,1) = (-1,0,2) and T (2,1) = (1,2,1) 

Solution : Let us express (-1,1)and (2,1) as linear combination of 
e1= (1,0) and e2 = (0,1) 

 (-1,1) = - 1 (1,0) + 1(0,1) = - e1+ e2 

 (2,1) = 2 (1,0) + 1(0,1) = 2 e1+ e2 

∴T (-e1+ e2)  = T (-1,1) and T(2 e1+ e2) = T (2,1). 

. ,i e  - T (e1) +T (e2) + = (-1, 0, 2)             ……………(1) 
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        2T (e1) + T(e2)  = (1, 2, 1)               ……………(2) 

Solve equation (1) and (2) for T(e1) and T(e2). 

Subtracting (1) from (2) weget  

3T(e1)   = (2, 2, -1)  ⇒ ∴T(e1) = 
2 2 1

, ,
3 3 3

− 
 
 

 

Subtracting in (1) we get  

T(e2)   = (-1, 0, 2)+ 
2 2 1

, ,
3 3 3

− 
 
 

 

i.e., T(e2 )  = 
1 2 5

, ,
3 3 3

− 
 
 

 

T (x,y)  =  T [x(e1) + y(e2) ] 

             = xT (e1) + yT (e2) 

 = x 
2 2 1

, ,
3 3 3

− 
 
 

+y
1 2 5

, ,
3 3 3

− 
 
 

 

  = 
2 2 2 5

, ,
3 3 3

x y x y x y− + − + 
 
 

 

    ∴T(x,y) = 
( )22 5

, ,
3 3 3

x yx y y x+ − −
 
 

 

(4) Find a linear transformation T : R3 →R3 such that  

T (1,1,1) = (1,1,1), T (1,2,3)= (-1,-2,-3) and T (1,1,2) = (2,2,4). 
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Solution : Let us express (1,1,1), (1, 2, 3),(1,1, 2) as linear 
combinations of e1 = (1, 0, 0) ,e2 = (0,1, 0) ,e3 = (0, 0, 1) 

 (1,1,1)   = 1 e1+ 1 e2 + 1 e3 

 (1,2,3)    = 1 e1+ 2 e2 + 3 e3 

 (1,1,2)  = 1 e1+ 1 e2 + 2 e3 

 T(1,1,1)    = T( e1+  e2 +  e3) 

 T(1,2,3)   = T( e1+  e2 +  e3) 

 T(1,1,2)  = T( e1+  e2 +  e3) 

ie,  T( e1)+  T(e2 )+ T (e3)         =  (1,1,1)     …(1) 

     T( e1)+  2T(e2 )+  3T(e3)      =  ( -1,-2,-3)      ...(2) 

     T( e1)+  T(e2 )+ 2T (e3)         = (2,2,4) . . .(3) 

Solve the equation (1), (2) and (3) for T( e1), T(e2 )and T (e3) 

We get  T( e1), = (4,5,8),  T(e2 ) = (-4-5,-10), T (e3)= (1,13) 

Now (x,y,z)  = x e1+ y e2 + z e3.  

   ∴ T (x,y,z)   =  x T( e1)+  T(e2 )+ T (e3)          

                        = x (4, 5, 8) + y (-4, -5, -10) + z (1, 1, 3) 

ie, T(x, y, z) = ( 4x – 4y + z, 5x –5y + z, 8x-10y + 3z) 

is required linear transformation. 

(5)  If V is the vector space of all polynomial over R, show that 
the mapping f: V→  V defined by f(p) = p(0) isa  linear map. 

Solution :   Let  p, q ∈  V ∴ p + q ∈  V 
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 f( p + q) = (p +q) (0) = p(0) + q (0) 

                                  = f(p) + f(q)  

f(cp) = (cp)(0)          = c(p(0)) = c f(p) 

∴ f : V →  V is a linear map. 

(6)  If  T:R2→  R2 is a linear transformation such that             
T (1,0) = (1,1) and T(0,1) = (-1,2) . Show that T maps the 
square with vertices (0,0) , (1,0) , (1,1) , (0,1) into a 
parallelogram. 

Solution : T (1,0) = (1,1) ,T (0,1)= (-1,2) 

        Let  (x,y) ∈  R2 . 

∴ (x,y)  = x ( 1,0) + y (0,1) 

∴T (x.y)  = x T (1,0) + y T (0,1) 

                     = x(1,1) + y (-1,2) 

                    = (x –y, x + 2y) 

∴T (x.y)       = (x –y, x + 2y) 

T (0,0)          = (0,0)   ≡ A 

T(1,0)           = (1,1)   ≡ B     

T (1,1)          = (0,3)   ≡  C 

T ( 0,1)         =  (-1,2) ≡  D 

∴ A,B,C,D are the vertices of a quadrilateral. 
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  To show that  ABCD is a parallelogram, we have to show 
that the diagonals AC and BD bisect each other. 

          Mid point of AC = 
0 0 0 3 3

, 0,
2 2 2

+ +   =   
   

 

     Mid point of BD  = 
1 1 1 2 3

, 0,
2 2 2

− +   =   
   

 

∴ Diagonals bisect each other  

∴ ABCD is a parallelogram. 

1.11 Matrix of a linear transformation  

 In this section we shall study how to associate a matrix to 
a linear transformation and conversely how to associate a linear 
transformation to a matrix. 

Let U and V be two vector spaces of dimensions m and n 
respectively. 

Let B1 = { α 1, α 2 ,…… α n} and B2 = { β 1, β 2,…….β n} 

be the bases of U and V respectively. 

Let T:U→  V be a linear transformation defined 

By T(α i)  = Ci1 β 1 + Ci2 β 2+ ………….+ Cin β n. 

T(α 1)   =      C11 β 1 + C12 β 2 + …………+ C1nβ n. 

T (α )  =        C21β 1 + C22 β 2 + …………+ C2n β n. 

…………………………………………………… 
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……………………………………………………… 

T(α m)    = Cm1 β 1 + Cm2 β 2+ ………….+ Cmn β n. 

The coordinates of  T (α i), i  = 1,2,    …..m w.r.t the basisβ 2 of 
V determine an m×n matrix 

A =  

11 12 1

21 22 2

1 2

....

....

.... .... .... ....

.... .... .... ....

....

n

n

m m mn

c c c

c c c

c c c

 
 
 
 
 
 
  

 =  

11 21 1

12 22 2

1 2

....

....

.... .... .... ....

....

m

m

n n mn

c c c

c c c

c c c

 
 
 
 
 
  

 

This matrix A is called the matrix of linear transformation T 
relative to the bases B1 and B2 . conversely , given a matrix A=  
(Cij)mxn, we shall associate a linear transformation T:U →  V 
where U and V are vector spaces of dimensions m and n 
respectively. 

Consider the bases B1 = {α 1, α 2,………. α n}and  

B2 = { β 1, β 2….. β n} of U and V respectively. 

We shall define  a linear transformation T: U→V by defining the 
values of T on the vectors of B1 as: 

T(α 1)   =      C11 β 1 + C12 β 2 + …………+ C1nβ n. 

T (α )  =        C21β 1 + C22 β 2 + …………+ C2n β n. 

…………………………………………………… 

……………………………………………………… 
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T(α m)    = Cm1 β 1 + Cm2 β 2+ ………….+ Cmn β n. 

Now we extend T linearly to the entire space V. Further the linear 
transformation T is unique. Hence every matrix can be associated 
to a linear transformation. 

We shall illustrate these in the following examples. 

Worked  examples: 
1.  Find the coordinates of the vector ( )4,2α =  belongs to R3  

relative to the ordered pair ( )( ){ }1,1 3,1B =      

Let  ( ) ( ) ( )1 14,2 1,1 3,1a b= +      

  1 1 1` 1

1 1

4 3 2

1, 1

a b and a b

a b

⇒ = + = +
⇒ = =

   

∴ (1,1) is the relative bases.    

2.   Find the matrix of the linear transformation 2 3T R R= →   

defined by ( ) ( ), , 2T x y x y y z x= + + +    

Solution :  Let  ( ) ( ) 2
1 21,0 , 0,1e e R= = ∈    

      ( ) ( ) ( ) 3
1 2 31,0,0 , 0,1,0 , 0,0,1f f f R= = = ∈  

 ( ) ( ) ( )1 1 2 31,0 1,0,1 1 0 1T e T f f f= = = + +   

( ) ( ) ( )2 1 2 30,1 1,1,0 1 0 1T e T f f f= = = + +  

The matrix linear transformation of  
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1 1
1 0 1

0 1
1 1 0

1 0

is

 
   
       

      

3.  If 3 2: ( ) ( )T V R V R→  is defined by ( ) ( ), , ,T x y z y x y z= − −  

Find matrix of T     ( N 2001 )   

Solution :  Let   1 2 3 3, , , ( )e e e V R∈     

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

1,0,0 0 1,0 0 1,0

0,1,0 1 0,1 0 1,1

0,0,1 0 0,0 1 0, 1

T e T

T e T

T e T

= = − − = −

= = − − =

= = − − = −

    

∴ The matrix of the L.T  is   

1 0
1 1 0

1 1
0 1 1

0 1

is

− 
−  
   −  − 

   

 

4.  Find the matrix of the linear transformation      

3 3:T R R→  defined by ( ) ( ), , , 2 , 2T x y z x y z x z x y z= − + − + −  

Solution :  Let 3
1 2 3, ,e e e R∈     ( M 1999 )  

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

2

3

1,0,0 1,2,1

0,1,0 1,0,1

0,0,1 1, 1, 2

T e T

T e T

T e T

= =

= = −

= = − −

  

∴ The matrix of the L.T is   
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1 2 1 1 1 1

1 0 1 2 0 1

1 1 2 1 1 2

is

−   
   − −   
   − − −   

   

5.  Find the matrix of the L.T ., 3 2:T R R→  de   defined by     

 ( ) ( ), , 2 3 , 2T x y z x y y z= + +  w.r.t   standard bases  

Solution :  Let 3
1 2 3, ,e e e R∈ , the standard bases     ( A 2004 )   

( ) ( ) ( )1 1,0,0 2,0T e = =      

( ) ( ) ( )2 0,1,0 3,1T e = =  

( ) ( ) ( )3 0,0,1 0,2T e = =  

The matrix linear transformation is   

        

2 0
2 3 0

3 1
0 1 2

0 2

is

 
  
      

   

6.  Find the matrix of the linear transformation 3 2:T R R→     

     Defined by ( ) ( ), 2 , 2T x y x y x y= + −   ( N 04 )   

Solution :  Let e1 , e2  ∈  R2        

 ( ) ( ) ( ) ( ) ( ) ( )1 21,0 2,1 ; 0,1 1, 2T e T T e T= = = = −    

 The matrix L.T.  is  
2 1 2 1

1 2 1 2
is

   
   − −   
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7.  Find the matrix of the linear transformation                              
T : V 2( R ) →  V2( R ) defined by T (x,y) = (x,-y) w.r.t the 
standard basis of V2( R ). 

Solution :  

          T (x,y) = (x,-y) 

          T (e1)  = T (1,0) = (1,0) 

            T (e2)  = T (0,1) = (0,-1) 

 The matrix of linear transformation is 
1 0

0 1

 
 − 

 

8.   Find the matrix of the linear transformation                             
T: V 2( R ) →  V3( R )such that T (-1, 1) = (-1, 0, 2) and                 
T (2, 1) = (1, 2, 1).       (M 2000) 

Solution  : (-1,1) = - 1e1 + 1e2  

                     (2,1)    = 2e1 + 1e2 

 T (-1,1) = T (-e1 + e2) and T (2,1) = T (2e1+ e2) 

i.e., -T (e1) +T(e2)      = (-1,0,2)          ………..(1) 

       2T (e1) + T(e2)      = ( 1,2,1)        …………(2) 

Solve these equation for T(e1) and T(e2). 

Subtracting (1) and (2) we get 

 3T (e1) = (2,2,-1) 
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∴ T (e1)  = 
2 2 1

, ,
3 3 3

− 
 
 

 

 ∴T(e2)  = (-1,0,2) + 
2 2 1

, ,
3 3 3

− 
 
 

  = 
1 2 5

, ,
3 3 3

− 
 
 

 

The matrix of L.T .is  

 

2 2 1

3 3 3
1 2 5

3 3 3

− 
 
 
− 
  

  = 

2 1

3 3
2 2

3 3
1 5

3 3

− 
 
 
 
 
 − 
  

 

9.  Find the matrix of the linear transformation   

T:V 3( R) →V2( R) defined by T(x,y,z) = ( x + y,y + z) w.r.t 
standard basis. 

Solution : the standard basis are (1,0,0),(0,1,0),(0,0,1). 

∴ T (1,0,0) = ( 1 + 0,0 + 0) = (1, 0) 

        T (0, 1, 0)  = ( 0 + 1, 1 + 0) = (1, 1) 

         T (0, 0, 1) = ( 0 + 0, 0 + 1) = (0, 1) 

∴ The  matrix of the linear transformation is  

 

1 0

1 1

0 1

 
 
 
  

    = 
1 1 0

0 1 1
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10.  Find the matrix of the linear transformation T:R4 →R3 
defined by T(x1, x2, x3, x4) = (x1+ x2 + 2x3 + 3x4,x1 + x3 –x4,  x1+ 2x2)  
w.r.t the bases B1 = (1, 1, 1, 2), (1,-1, 0, 0), (0, 0, 1, 1), ((0,1,0,0) and 
B2 = { (1, 2, 3), (1, -1, 1),(2, 1, 1)} 

Solution :   B1 = {( 1,1,1,2) ,(1,-1,0,0). (0,0,1,1),((0,1,0,0)} 

                    B2 = { (1,2,3), (1,-1,1),(2,1,1)} 

T (1,1,12)    = (1+1+2+6, 1 + 1-2,1 + 2)    =     ( 10, 0, 3) 

T (1,-1,0,0)  = ( 1-1 +0 +0,1+0-0,1-2)       =   (0,1,-1) 

T (0,0,1,1)    = ( 0+ 0 +2 + 3,0 +1-1,0 + 0) =   ( 5,0,0) 

T ( 0,1,0,0)  = ( 0 +1 + 0 +0,0+0-0,0+2)    =   (1,0,2) 

Now (10, 0, 3)  = a(1, 2, 3) + b (1,-11) + c (2,1,1) 

                           = (a + b +2c, 2a-b + c, 3a + b+c) 

∴ a+b + 2c = 10, 2a-b + c = 0.3a + b +c = 3 

Solving  for a, b, c, we get a = 
11 19 41

, , .
9 9 9

b c
− = =  

∴(10, 0, 3)  = ( ) ( ) ( )11 19 41
1,2,3 1, 1,1 2,1,1

9 9 9

− + − +  

 (0, 1, -1)     =  a (1,2,3) + b (1,-1,1) + c(2,1,1) 

                    =  (a +b + 2c,2a-b+c,3a + b +c) 

∴ a +b +2c  = 0, 2a –b + c = 1, 3a + b +c = 2 

Solving these equation ,we get  
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a  = 
2 8 5

, , .
9 9 9

b c
− −= =  

∴ (0,1,-1)  = ( ) ( ) ( )2 8 5
1,2,3 1, 1,1 2,1,1

9 9 9

− −− − +  

 Similarly we have 

(5,0,0)  = ( a +b+ 2c,2a - b + c,3a + b + c) 

 ∴ a + b +2c= 5, 2a-b+c = 0, 3a + b + c = 2 

Solving these equations we get a = 
10 5 25

, ,
9 9 9

b c
− = =  

∴ (5,0,0) = ( ) ( ) ( )10 5 25
1,2,3 1, 1,1 2,1,1

9 9 9

− + − +  

and (1, 0, 2) = ( a + b + 2c, 2a - b + c, 3a + b + c) 

∴ a + b +2c = 1, 2a - b + c = 0, 3a + b+ c = 2 

Solving these equations we get a = 
4 7 1

, , .
9 9 9

b c
−= =  

∴(1,0,2)  = ( ) ( ) ( )4 7 1
1,2,3 1, 1,1 2,1,1

9 9 9
+ − −  

∴The matrix of the linear transformation is  

 

11 19 41

2 8 51

10 5 259

4 7 1

− 
 − − 
 −
 − 

    = 

11 2 10 4
1

19 8 5 7
9

41 5 25 1

− − − 
 − 
 − 
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11.  Find the linear transformation for the matrix                             

A= 

1 0

2 0

1 3

− 
 
 
  

with respect to  

(i) B1 = {(1,0,0),(0,1,0),(0,0,1) and B2  = {(1,0),(0,1)} and 

(ii)  B1 = {(1,2,0),(0,-1,0)(1,-1,1) and B2 = {(1,0),(2,-1)} 

Solution : (i) the given bases are: 

B1   = {(1,0,0),(0,1,0),(0,0,1)  B2  = {(1,0),(0,1)} 

The matrix is A= 

1 0

2 0

1 3

− 
 
 
  

 

Define the linear transformation. 

T:V3(R ) →V2( R) by  

T (1,0,0) = (-1) (1,0) + 0 (0,1) = (-1,0) 

T(0,1,0)   = 2(1,0) + 0(0,1) = (2,0) 

T (0,0,1)     = 1 (1,0)+ 3 (0,1) = (1,3) 

∴   T (e1)   = ( -1,0) 

        T (e2)  = (2,0) 

         T (e3) = (1,3) 

Now  T (x,y,z)   = T (x e1+ y e2+ z e3) 
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                         = x T (e1) + y T (e2)  +z T (e3) 

                         = x(-1,0) + y (2,0) + z (1,3) 

                        = (-x + 2y + z ,0+0 + 3z) 

                       = (-x + 2y + z,3z) 

ie, T(x,y,z)         = ( -x + 2y + z,3z) 

(ii) The bases are B1 = {(1,2,0),(0,-1,0),(1,-1,1)} 

                            B2  = {(1,0),(2,-1)}. 

 Define the L.T : V3 ( R) →V2( R) by  

T (1,2,0)   = (-1)9(1,0) + 0(2,-1) = (-1,0) 

T(0,-1,0)    = 2(1,0) + 0(2,-1)       = (2,0) 

T(1,-1,1)     = 1(1,0) + 3 (2,1)       = (7,-3) 

Now (1,2,0)  =  1(1,0,0) + 2(0,1,0)  + 0(0,01) 

∴T (1,2,0)   = T ( 1e1+ 2e2 + 0e3) 

ie,T (e1) + 2T(e2)   = (-1,0)                   ………….(1) 

(0,-1,0)         =  0(1,0,0)- 1(0,1,0) + 0(0,0,1) 

                      =  0e1-1e2 +0e3 

∴T (0,-1,0)   =  T (0e1-1e2 + 0e3) 

     ie,-T(e2)    = (2,0)                          …………..(2) 

(1,-1,1)          = 1(1,0,0) –1(0,1,0) + 1(0,0,1) 

                      = 1e1-1e2 + 1e3 

                College Mathematics VII 
 
102 
 

∴T (1,-1,1)   = T (e1-e2+e3) 

ie, T (e1) – T(e2) + T(e3) = (7, -3)    ……….(3) 

Solving the equations (1) ,(2) and (3) ,we get from (2)  

 T(e2) = (-2, 0)  

from (1)  T (e1) + 2T(e2)   = (-1,0)                    

 ∴    T (e1) = (-1,0) – (-4,0) =  (3, 0) 

from (3), we get (3, 0) + (2, 0) + T(e1) = (7, - 3) 

∴ T(e1) = (7, -3)-(3, 0)- (2, 0) 

ie,T(e3)   = (2, -3) 

∴         T(x,y,z)  = T (xe1 + ye2+z e3) 

              = xT(e1)+yT(e2) + zT(e3)  

                = x(3,0) + y (-2,0) + z (2,-3) 

                = (3x- 2y +2z,-3z) 

(12) Find the linear transformation or the matrix  

  A= 

0 1 1

1 0 0

1 1 0

− 
 
 
 − 

w.r.t 

(i) Standard bases B1 = B2 = {e1,e2,e3} 

(ii)     B1= B2=  {(0,1,-1),(-1,1,0),(-1,-1,0)} 
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Solution :  (i) Bases B1= B2 =  {e1, e2, e3} 

Define the L.T ;  T: V3 ( R) →  V3 ( R) by  

 T(e1)  = T(1,0,0) = 0e1-1e2 + 1e3 = (0,1,-1) 

T (e2)  = T (0,1,0) = 1e1+0e2 + e3 = (1,0,0) 

T (e3)  = T ( 0,0,1)  = 1e1 – 1e2 + 0e3 = (1,-1,0) 

∴T(e1)  = (0,1,-1), T (e2) = (1,0,0), T (e3) = (1,-1,0) 

T (x,y,z) = T (xe1+ye2 + ze3) 

       = x T(e1) + y T (e2)  + z T (e3) 

       = x(0,1,-1) + y(1,0,0) +  z (1,-1,0) 

ie, T(x,y,z) = (y + z, x-z, -x) is the required linear transformation. 

(ii) Bases B1 = B2 = {(0,1,-1),(-1,1,0),(-1,-1,0)} 

Define the L.T T:V3  ( R) →V3( R) by  

T (0, 1,-1)   = 0(0,1,-1) + 1(-1,1,0) –1(-1,-1,0) 

               = (0,2,0) 

T(-1,1,0)   = 1(0,1,-1) + 0 (-1,1,0) + 0 (-1,-1,0) 

                   = (0,1,-1) 

T(-1-10)     =  1(0,1,-1) -1 (-1,1,0) + 0 (-1,-1,0) 

                 = (1,0,-1) 

Now  (0,1,-1) = 0e1-1.e2 - 1e3 

∴T (0,1,-1)       = 0  T(e1) + 1 T (e2)  -1 T (e3) 
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ie, T(e2) – T(e3)  = (0,2,0)             …………(1) 

(-1,1,0)        = -1.e1 + 1.e2 + 0.e3 

∴ T(-1,1,0)  = -T (e1)+ T(e2) + 0 T(e3) 

ie,-T(e1) + T(e2) = (0,1,-1)             ………..(2) 

(-1,-1,0)  = -1. e1 –1. e2 + 0.e3 

∴ T (-1,-1,0) = - T (e1) -T(e2) + 0 T(e3) 

ie, - T (e1) -T(e2) = (1,0,-1)      ………..(3) 

Solving equation (1), (2), (3) we get 

T (e1) = 
1 1

, ,1 ,
2 2

− − 
 
 

 T(e2) = 
1 1

, ,0
2 2

− 
 
 

, 

 T(e3) = 
1 3

, ,0
2 2

− − 
 
 

  

 ∴T (x,y,z)  = T (xe1+ye2 + ze3) 

             = x 
1 1

, ,1
2 2

− − 
 
 

 + y  
1 1

, ,0
2 2

− 
 
 

+ z  
1 3

, ,0
2 2

− − 
 
 

 

i.e  T (x,y,z)   = 
3

, ,
2 2 2 2 2 2

x y z x y z
x

 − − − − + − 
 

is the 

required 

13.  Find the linear transformation 3 2:T R R→  corresponding to  

       the matrix 
1 2 3

1 1 0

 
 − 

 w.r.t  the bases  
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  ( ) ( ) ( ){ }1 1,0,0 , 0,1,0 , 0,0,1B =  to ( ) ( ){ }2 2,1 , 3,1B =     (A 04) 

Solution: ( ) ( ) ( ) ( )1,0,0 1 2,1 1 3,1 1,0T = − = −                

( ) ( ) ( ) ( )0,1,0 2 2,1 1 3,1 7,3T = + =  

      ( ) ( ) ( ) ( )0,0,1 3 2,1 0 3,1 6,3T = − =       

Let  ( ) 3, ,x y z R∈    

( ) ( ) ( ) ( ) ( )1 2 3 1 2 3, , 1,0,0 0,1,0 0,0,1 , ,x y z C C C C C C= + + =    

 ∴  1 2 3, ,C x C y C z= = =     

         ( ) ( ) ( ) ( ), , 1,0,0 0,1,0 0,0,1x y z x y z∴ = + +    

( ) ( ) ( ) ( ), , 1,0,0 0,1,0 0,0,1T x y z xT yT zT=  

                    ( ) ( ) ( )1,0 7,3 6,3x y z= −  

                 ( )7 6 , 3 3x y z y z= − + + +   

14.  If the matrix of linear transformation T on ( )2V R   relative to  

standard basis of ( )2V R  is 
2 3

1 1

− 
 
 

 then what is the matrix of  T 

relative to the basis ( ) ( ){ }1 1,1 , 1, 1B = −      

Solution :  Let  e1  &  e2  are standard basis of ( )2V R  for the given  

      Matrix   ( ) ( ) ( ) ( )1,0 2 1,0 1 0,1 2,1T = + =    

      ( ) ( ) ( ) ( )0,1 3 1,0 1 0,1 3,1T = − + = −  

For  ( x, y )  ∈  V2 (R) 
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 ( ) ( ) ( ) ( ) ( ), 1,0 0,1 2,1 3,1T x y x y x y= + = + −      

     ( )2 3 ,x y x y= − +     

From the given basis  B1 ,   

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 3
1,1 2 3,1 1 1,2 1,1 1, 1

2 2
5 5

1, 1 2 3,1 1 5,0 1,1 1, 1
2 2

T

T

= − + = − = − −

− = + − = = + −
  

∴ Required matrix Transformation is  

1 5

2 2
3 5

2 2

 
 

=  
− 
  

   

15.  For the matrix  
1 2

3 4

 
 
 

 find the corresponding linear trans- 

       formation   2 2:T R R→  w.r.t the bases ( ) ( ){ }1,0 , 1,1         

       Let ( ) 2, ,x y R∈    ( ) ( ) ( )1 1, 1,0 1,1x y a b= +  

  1 1 1, ,x a b y b a x y= + = ∴ = − ,   

  ( ) ( ), ,x y a b b⇒ = +   

( ),x y y= −  

( ) ( )( ) ( ), 1,0 1,1x y x y y⇒ = − +  

 ( ) ( ) ( ) ( ), 1,0 1,1T x y x y T yT= − +   

( )( ) ( )4,3 6,4x y y= − +  
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( )4 4 6 , 3 3 4x y y x y y= − + − +  

               ( )4 2 , 3x y x y= + +  

This is the matrix transformation.     

16.  Find the matrix of the linear transformation    

       ( ) ( )3 2:T V R V R→  defined by ( ),T x y y z= + +  relative  

        to bases      (i)  standard bases of ( ) ( )3 2V R and V R    

              (ii)  ( ) ( ) ( ){ }1 31,1,1 , 1,0,0 1,1,0B of V R=  

  (iii)  ( ) ( ){ } ( )2 21,0 0,1B of V R=      

Solution :  case (i)  e1 , e2 , e3 are the standard bases of   

       V3 (R)   &  e1   &  e2  are of V2 (R)      

 ( ) ( ) ( ) ( ) ( )1 1,0,0 1,0 1 1,0 0 0,1T e T= = = +   

( ) ( ) ( ) ( ) ( )2 0,1,0 1,1 1 1,0 1 0,1T e T= = = +  

( ) ( ) ( ) ( ) ( )3 0,0,1 0,1 0 1,0 1 0,1T e T= = = +  

Thus the matrix linear transformation is   

 

1 0
1 1 0

1 1
0 1 1

0 1

is

 
  
      

    

(ii)  ( ) ( ) ( ) ( )1,1,1 2,2 2 1,0 2 0,1T = = +    

   ( ) ( ) ( ) ( )1,0,0 1,0 1 1,0 0 0,1T = = +         

               ( ) ( ) ( ) ( )1,1,0 1,1 1 1,0 1 0,1T = = +      
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 Thus the matrix linear transformation is   

 

2 2
2 1 1

1 0
2 0 1

1 1

is

 
  
      

    

17.  Find the matrix of the linear transformation 2 3:T R R→   

defined  

       by ( ) ( ), 2 , , 3 3T x y y x y y x= − −  relative to bases    

      ( ) ( ){ } ( ) ( )( ){ }1 21,1 1,1 1,1,1 , 1, 1,1 0,0,1B and B= − = −    

Solution :  ( ) ( ) ( ) ( ) ( )1 2 31,1 1,1,0 1,1,1 , 1, 1,1 0,0,1T a a a= = + − +   

 1 2 2 1 2 31 0, 0a a a a a a⇒ + = = + + =       

1 2 31 0, 1a a a⇒ = = = −  

   ( ) ( ) ( ) ( ) ( )1 2 31,1 3,1,6 1,1,1 1, 1,1 0,0,1T b b b− = = + − +     

 1 2 1 2 1 2 3

1 2 3

3, 1, 6

2, 1, 3

b b b b b b b

b b b

⇒ + = − = − + =
⇒ = = =

   

∴ Matrix L.T.  is  

1 2
1 0 1

0 1
2 1 3

1 3

is

 
−   

      − 

       

                     EXERCISE.         

1.  Find the coordinates of the vector nRα ∈  relative to the 

ordered  basis mentioned    

 a)     ( ) ( ) ( ){ }3, 4 1,0 , 0,1Bα = − =    
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 b)     ( ) ( ) ( ) ( ){ }4, 1,2 1,1,1 1,2,3 1,0,0Bα = − − =    

2.  Find the matrix of the following transformation :   

(i)  ( ) ( )2 2:T V R V R→  defined by  ( ) ( ), 3 ,T x y x x y= −    

(ii) ( ) ( )3 3:T V R V R→ defined by ( ) ( ), , 2 , 2T x y z z y x y z= − + −    

(iii) ( ) ( )3 3:T V R V R→ defined by ( ) ( ), , ,2 2T x y z x y y y x= + −   

(iv)  2 3:T R R→   defined by  ( ) ( ), 3 , 2 4 , 5 6T x y x y x y x y= − + −   

(v) 2 3:T R R→ defined by ( ) (, , 2 ,T x y z x y z= + −   

,y z+ )2x y z+ −  

(vi) 3 2:T R R→ defined by ( ) ( ), , 3 2 , 3 2T x y z x y z x y z= − + − −    

3.  Find the matrix for the following      

a)  2 2:T R R→  defined by ( ) ( )1,1 1,0,2T − = −  ( ) ( )2,1 1,2,1T =  

b)  2 2:T R R→  defined by ( ) ( )2,1 3,4T =  ( ) ( )3,4 0,5T − =    

4.  Find the matrix of the following :-       

(i)  3 2:T R R→   defined by ( )1 1 22 2T e f f= − , ( )2 1 22T e f f= + , 

      ( )3 0T e =  where { }1 2 3,e e e  and { }1 2,f f  are standard basis of  

      R3 and R2   

(ii)  3 3:T R R→  defined by ( ) ( ) ( ) ( )1,1,1 1,1,1 1, 2,3 1, 2,3T T= = −   

       and ( ) ( )1,1,2 2,2,4T =    

 (iii)  2 3:T R R→  defined by ( ) ( ) ( ) ( )1,1 1,0, 2 , 2,1 1, 2,1T T− = − =  

5.  Find the matrix of the following transformation   
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(i)  3 2:T R R→  defined by ( ) ( ), , 2 , 4 ,3T x y z y z x y x= + −  w.r.t  

      the bases ( ) ( ) ( ){ }1,1,1 , 1,1,0 , 1,0,0       

(ii)  2 3:T R R→  defined by ( ) ( ), 2 , ,3 3T x y x y y y x= − + − w.r.t.      

the bases ( )( ){ } ( ) ( ) ( ){ }1 21,2 2,1 , 1,0,2 , 1,2,3 , 1, 1, 1B B= − = − − −   

(iii)  2 3:T R R→  defined by ( ) ( ), , ,0T x y x y=  w.r.t the standard  

 bases     

(iv)  2 2:T R R→  defined by ( ) ( ), 4 ,2 3T x y x y x y= + −  w.r.t 

        { } ( )( ){ }1 1 2 2, 1,3 2,5B e e B= =       

6.  For the matrix and the bases find the matrix transformation  

(i)  
1 1 0 2

3 4 1 4

′− 
 − 

 w.r.t the standard bases   

(ii)  

1 3

1 1

2 0

′ 
 − 
  

  w.r.t the standard bases of R3 and R2     

7. For the following matrices and bases, determine the linear 

transformation, such that the matrix is the matrix of T w.r.t the 

bases  

(i)  

2 1

0 1

3 3

 
 
 
  

 w.r.t       ( ) ( ){ }1 2,1 1,2B = −  

( ) ( ) ( ){ }2 1, 1, 1 , 1,2,3 , 1,0,2B = − − −   
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(ii)  

1 0 0

0 1 0

0 0 1

 
 
 
  

   w.r.t  a)  Standard bases       

b)  ( ) ( ) ( ){ }1 1,1,1 1,0,0 0,1,0B =   

( ) ( ) ( ){ }2 1,2,3 1, 1,1 2,1,1B = −    

(iii)  
1 0 1

2 1 3

− 
 
 

  w.r.t  ( )( ){ }1 1,1 1,1B = −    

  ( )( )( ){ }2 1,1,1 1, 1,1 0,0,1B = −     

Answers 

1)    ( )1 7
) ) 7,3,0

2 2
a b

 − − 
 

     

2) (i)  
3 1

0 1

 
 − 

    (ii)  

0 1

2 2

1 1

 
 − 
  

     (iii)   

1 0 1

1 2 2

0 0 0

− 
 
 
  

   

 (iv)   
3 2 5

1 4 6

 
 − 

   (v)   

1 0 1

2 1 1

1 1 2

 
 
 
 − 

   (vi)   

3 1

2 3

1 2

 
 − − 
 − 

  

3) a)  
2 2 11

1 2 53

− 
 − 

   b)  
12 111

9 2211

 
 
 

    

4) (i)  

2 1

1 2

0 0

− 
 
 
  

  (ii)  

4 1 8

4 1 10

1 1 3

 
 − − − 
  

 (iii)  
2 2 11

1 2 53

− 
 − 
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5) (i)

3 6 6

3 6 5

2 2 1

− 
 − 
 − − 

  (ii)
1 0 1

3 1 2

− 
 
 

  (iii)
1 0 0

0 1 0

 
 
 

  

    (iv) 
1 2 6

1 1 5

− − 
 
 

  

6) (i)  ( ) ( ), , , 2 , 3 4 2 4T x y z t x y t x y z t= − + + + −   

 (ii)  ( ) ( ), , 2 , 3T x y z x y z x y= − − +    

7) (i)  ( ) 2 4 2 17
, , ,

5 5 5

x y x y x y
T x y

+ − − − + =  
 

    

   ( ) 7 9 12 4
, , ,

5 5

x y x y
T x y x

+ − − =  
 

      

 (ii)  a)  ( ) ( ), , , ,T x y z x y z=     

        b)  ( ) ( ), , 2 2 , 2 ,T x y z x y z x y z x y z= + − − + + + +    

 (iii)  ( ) ( ), 2 , , 3 3 .T x y y x y y x= − −     

1.12 : Rank  and Nullity  of  a linear  transformation  

 To a linear transformation T : U→V, we associate two 
sets called the Range space and the null space . 

 Definition  : Let T : U→V be a linear transformation 
.then the range of T is the set of all images of the elements of U 
under T, and is denoted by R (T)    i.e.  R (T) = { T(α ) : α ∈U }, 
R (T) is also called the range space.  Clearly  R(T) ⊆ V. 
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 Definition  : Let T : U→V be a linear transformation. 
Then the kernel of T is the set of all elements of U whose images  
under T are 0′  the zero elements of V, and is denoted by 
N(T).N(T) is also called the null space. 

i.e, N(T) is non-empty Q0∈U:T (0) = 0’ and N(T) ⊆ U. 

Theorem 1: If T : U→V is a linear transformation, then R(T) is a  
subspace of V and N(T) is a  subspace of U. 

Proof : (i) To prove that R(T) is a subspace of V. 

Let v1,v2 ∈R(T) 

∴there exist u1,u2∈U such that  

T(u1) = v1 and T(u2) = v2. 

Now ,  v1 + v2 = T(u1)+ T(u2) = T (u1+u2)  Q  T is linear . 

                                        = T(u) where u = u1+u2 ∈U. 

∴ there exist some vector u ∈U such that 

        T(u) = v1 + v2 

 ∴ v1 + v2 ∈R(T) 

Let k be any scalar. 

Then  k v1 ∈V since V is a vector space . 

∴ k v1 = k T (u1) since v1 ∈R(T). 

             =  T (ku1) since T is a linear. 

∴there exists an elements ku1 ∈  U such that  k v1 = k T (u1) 
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∴ k v1 ∈R(T) 

∴R(T) is closed under addition and scalar multiplication. 

Hence R(T) is a subspace of V. 

(ii)   Let  u1,u2 ∈  N (T)  

 ∴ T(u1) = 0’and T(u2) = 0’ 

Now T (u1+u2)  = T(u1)+ T(u2) Q  T is linear . 

              = 0′   + 0′  = 0′  

∴ u1+u2 ∈  N (T) 

Let c be a scalar . 

 T(cu1)  =  cT (u1) Q  T is linear . 

  = c. 0′  = 0′  

∴ c u1∈  N (T)  

∴ N(T) is closed w.r.t addition and scalar multiplication. 

∴N(T) is a subspace of U. 

Theorem 2 : Let T:U →V be a linear transformation . Then T 
is one-one if and only if N(T) = {0} where 0 is the zero 
elements of U 

Proof  : I part : Let T be one-one . 

           ∴ T(α 1) = T(α 2) ⇒  α 1 = α 2 ,∀  α 1 , α 2 ∈  U 

         Let α  ∈N (T) 
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         ∴T(α ) = 0′  

         But  T(0) = 0′  

     ∴ T(α ) = T(0) 

This ⇒  α  = 0 as T is one-one. 

∴we have proved that it α ∈N (T) then α  = 0. 

∴N (T) = {0} 

II  part :  let N(T)  ={0} 

T(α 1) = T(α 2)  

⇒  T(α 1) - T(α 2) = 0’ 

⇒  T(α 1) +(- T(α 2)) = 0’ 

⇒  T(α 1) + T(-α 2) = 0’ since - T(α 2) = T(-α 2). 

⇒T(α 1-α 2) = 0’since T is linear  

⇒ α 1-α 2 ∈N (T). 

But N(T) = {0} consisting of only elements 0 

∴ α 1-α 2 = 0 

∴ α 1= α 2 

Hence  T (α 1) = T (α 2) ⇒ α 1=α 2 

 ∴ T is one-one . 

Definition  : If T:U →V is a linear transformation  from a vector 
space U into another vector space V, the dimension of the  range 
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space R (T) is called the rank of T and is denoted by R (T) and the 
dimension of the null space (or the kernel) of  T is called the 
nullity of T and is denoted by n (T). 

Theorem 3 : Let  T:U →V be a linear transformation .If the 
vectors   α 1, α 2,…….. α n generates U then the vectors. T 
(α 1) ,T (α 2),…………T(α n) generates R (T). 

Proof  :  Let S = {α 1, α 2,…….. α n} 

 Since S spans U, every vectorα ∈  U can be expressed as a 
linear combination of the vectors α 1, α 2,…. α n. 

 Now T (α 1) ,T (α 2),…………T(α n) ∈R(T) 
Since R (T) is a subspace , any linear combination of these vectors 

is also in R(T)  
Let β  ∈R(T) . This implies that there exists an α ∈  U such that      

T(α ) = β . 
Since α ∈  U,  α  = c1α 1+ c2α 2,+…….. +cnα n . 
Sinceβ ∈R (T),β =T(α )= T(c1α 1+ c2α 2,+….. +cnα n ) 

                              = c1T(α 1)+ c2T(α 2),+…….. +cnT(α n) 
since T is linear . 

∴ β  ∈  R(T) ⇒ β  = a  linear combination of  
T(α 1),T(α 2),…….. T(α n) 
ie, β ∈R (T)  ⇒ β  is in the linear span of T(α 1),T(α 2),…….. 
T(α n) 
∴ R (T) is in the span of T(α 1),T(α 2),…….. T(α n). 
∴T T(α 1),T(α 2),…….. T(α n) generates  R(T) 
 
Remark :  From the above theorem, to find the range and rank of T, 
find the matrix A of the linear transformation and reduce it to echelon 
form E. 
Then (a) The basis of R (T) is the set of non-zero rows of E. 
          (b) The rank of  T = dimension of R(T) 
                                         =  number of non-zero rows of E. 
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Theorem 4 : Rank -  nullity  Theorem    :  
Let  T : U →V be a linear transformation and U be a finite 
dimensional vector space . Then  

 dim R(T) + dim N(T) = dim U. 
i.e., r (T) + n (T)  = dim U.    Or    rank + nullity  =  dim (domain) 
 
Proof : Let  U be a vector space of dimension m. 
i. e., dim  U = m. 

Since N  (T) is a subspace of the  finite dimensional vector 
space U, dimension of  N (T) is also finite. 

Let dim [N(T)] = n ie, nullity n (T)  = n. 
Since N(T) is a subspace of  U,n ≤  m. 
Let β 1 = { α 1, α 2,…….. α n} be a basis of  N (T) 

∴ β 1 is linearly independent  in U. 

We shall extend this set β 1 to a basis of the  vector space U. 
Let  this basis of  U be  
β 2 = { α 1, α 2,…….. α n, β 1, β 2,………. β s} 
 Clearly n + s = m . 
Now  T(α 1),T(α 2),…….. T(α n) , T(β 1), T(β 2),………. 

T( β s)∈  R ( T) 

But T(α 1) =  0′  T(α 2) = 0’…..  T(α n) =0′     
since  α 1, α 2,…….. α n, ∈  N ( T ) 
Let  S = { T(β 1), T(β 2),………. T(β s)}  
We shall  show that this set  S of s vector  is a basis of  R ( T ). 
 
(i)  S spans R ( T )  
      Sinceβ 2  is a basis of U, it spans U. 

Hence  the set { T(α 1),T(α 2),…… T(α n) , T(β 1), 

T( β 2),………. T(β s)}spans R (T)  
Since  T(α 1) =  0, T(α 2) = 0,…..  T(α n) = 0  
∴ the set  S = { T(β 1), T(β 2),………. T(β s)}spans  R(T). 

(ii) S is linearly  independent. 
Consider   c1 T( β 1) +c2 T( β 2),………. +cs T( β s) = 0 

⇒  T (c1 β 1 +c2 β 2,………. +csβ s ) = 0 Q  T is linear, 
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⇒  c1 β 1 +c2 β 2,………. +csβ s ∈N (T) 

      ∴ c1 β 1 +c2 β 2,………. +csβ s can be expressed as a linear 
combination of the elements of the  basis B1 of N ( T ). 
∴ c1 β 1 +c2 β 2,………. +csβ s =  d1α 1,+ d2α 2, 
      +…….. +dnα n. 
⇒  d1α 1,+ d2α 2,+…….. +dnα n - C1 β 1- C2 β 2,-……-Cs β s = 0 
Since B2 is a basis of U it is linearly independent. 
∴ d1 = 0, d2 = 0, ………dn 0, c1= 0 ,c2 = 0,………cs = 0 
∴ c1 T( β 1) +c2 T( β 2),………. +cs T( β s) = 0  
⇒  c1= 0 ,c2 = 0,…..cs = 0 
∴ S is linearly independent . 
∴ S is a basis  of  R (T)  
∴ dim [R(T)]= s 
Hence from (1) we get 
    dim  [N(T) +  dim [R(T)] = dim U 
i.e., n(T) + r(T) = m 
or rank + nullity = dim (domain) 
 
Worked Examples : 
 
 (1) Find the range space, kernel, rank and nullity of the  following 
linear transformation .Also verify the rank-nullity  theorem. 
   T : V2( R) →  V2( R) defined by  T (x1,x2) = (x1 + x2, x1) 

Solution : we shall find the matrix of T w.r.t. the standard 

               basis { (1,0,),(0,1)} of V2 ( R) 

              T(1,0) = ( 1 + 0,1)  = ( 1,1) 

                T (0,1) = (0 + 1,0)  = (1,0) 

∴ The matrix A of T is 
1 1

1 0
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   A = 
1 1

1 0

 
 
 

 ~ 
1 1

0 1

 
 − 

 R2 – R1 

  This is in echelon form  

 There are two non-zero rows. 

 ∴ rank of T = 2 

Hence  R(T) is the subspace generated by (1, 1) and   (0,-1). 

∴ R(T) = {x1 (1,1) + x2 (0,-1)} 

             =  {(x1,x1) + (0,- x2)} 

            = { x1, x1- x2} for x1, x2 ∈R 

        ie., the range space = {x1, x1 – x2 } = V2(R)  

To find N(T) 

Let T (x1, x2) = 0 

⇒  (x1 + x2, x1) = (0,0) 

⇒  x1 + x2 = 0,  x1 = 0 

⇒  x1 = 0, x2 = 0. 

∴ N(T) contains only zero element of V2 ( R)  

∴ N(T) = {(0,0,0)} ,i.e, the null space = {(0,0,0)} 

∴ dim [N(T)] = 0 i.e, nullity = 0. 

∴Rank + nullity  = 2 + 0 = 2 = dim V2 ( R) 
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Hence the rank – nullity theorem is verified. 

2.  Verify Rank – nullity theorem for the linear transformation    

 
( ) ( )

( ) ( )
3 2:

, , ,

T V R V R defined by

T x y z y x y z

→

= − −
    

Solution :   ( )1 2 3 3, , ,e e e V R∈    

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1

2 2

3 3

1,0,0 1,0

0,1,0 1,1

0,0,1 0, 1

T e T

T e T

T e T

α
α

α

= = − =

= = =

= = − =

 

Consider   1 2 1 3 2

1 0 1 0 1 0 1 0

1 1 1 1 0 1 0 1

0 1 0 1 0 1 0 0

R R R R R

−       
       − − −       
       −       

uuur uuuuuuur uuuuuuuur
  

 The final matrix is in echelon form.  It has two non-zero rows 

 ∴ dim R ( T ) = 2   

( ) ( ) ( ){ } ( )21,0 , 0,1R T V R= ∈ =  Range space.   

To find nullity  :  ( ) ( ), , 0,0T x y z =    

  

( ) ( ), 0,0

0 0

y x y z

y x and y z

x y z

⇒ − − =
⇒ − = − =
⇒ = =

     

∴ The null space  ( ) ( ){ }, ,N T x x x x R= ∈    

∴ Nullity  = N ( T ) = 1.     

Thus  Rank  +  Nullity  =  2 + 1 = 3 = Dim ( V3 (R) )     



       Linear Algebra                                      
 

121

3.  Find the linear transformation  ( ) ( )3 3:T V R V R→      

     whose image space ( range ) is spanned by ( ) ( ){ }1,0, 1 , 1,2,2−   

   Solution  :  The  L.T  can be determined when the images of the  

    Vectors belonging to a basis of V3 ( R ) is known.   

    Let  ( ) ( ) ( )1 1,0,0 1,0, 1T e T= = −   

           ( ) ( ) ( )2 0,1,0 1,2,2T e T= =  

           ( ) ( ) ( )3 0,0,1 0,0,0T e T= =     

    ∴ ( ) [ ]1 2 3, ,T x y z T xe ye ze= + +      

  ( ) ( ) ( )1 2 3xT e yT e zT e= + +    

( ) ( ) ( )1,0, 1 1,2,2 0,0,0x y z= − + +  

( ), 2 , 2 (1)x y y x y= + − + −  

    ( 1 )  is the required transformation.     

4.  Find the linear transformation  ( ) ( )3 3:T V R V R→   whose 

image  space is spanned by ( ) ( ) ( ){ }1,1,0 , 0,1,1 1,2,1     

Solution :      Let  ( ) ( ) ( )1 1,0,0 1,1,0T e T= =  

      ( ) ( ) ( )2 0,1,0 0,1,1T e T= =  

     ( ) ( ) ( )3 0,0,1 1,2,1T e T= =    

∴   ( ), ,T x y z    [ ]1 2 3T xe ye ze= + +  

           ( ) ( ) ( )1 2 3xT e yT e zT e= + +      

                College Mathematics VII 
 
122 
 

[ ] ( ) ( )1,1,0 0,1,1 1,2,1x y z= + +  

( ), 2 ,x z x y z y z= + + + +  

5.   Find a L.T     ( ) ( )3 3V R V R→  whose kernel is spanned by  

        ( ) ( ){ }1,1,1 , 1,2,2     

Solution :  ( ) ( ) ( )1,1, 1 0,0,0 1,2,2T T− = =    

∴ consider  ( ) ( ) ( )( )( ){ }1,1, 1 1,2,2 , 1,0,0 0,1,0 0,0,1s = −    

span  ( )3V R  but linearly dependent.        

 Let  ( ) ( ) ( ) ( )1 2 3, , 1,1, 1 1,2,2 1,0,0x y z c c c= − + +    

1 2 3 1 2 1 2, 2 , 2 0x c c c y c c z c c= + + = + = − + +    

from  y & z ,       2 24
4

y z
c y z c

+= + ⇒ =    

       2 22
2 2

y z y z
c y c y

+ − = − = − = 
 

   

∴  3 1 2c x c c= − −   

          
2 4

4 2 2 4 3

4 4

y z y z
x

x y z y z x y z

− +   = − −   
   
− + − − − += =

    

( ) ( ) ( ) ( )1 2 3, , 1,1, 1 1,2,2 1,0,0T x y z c T c T c T∴ = − + +     
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( ) ( ) ( )4 3
1,1, 1 1,2,2 1,0,0

2 4 4

y z y z x y z
T T T

− + − + = − + + 
 

 

         

( ) ( ) ( )4 3
1,1, 1 1,2,2 1,0,0

2 4 4

y z y z x y z
T T T

− + − + = − + + 
 

       

( ) ( ) ( )4 3
0,0,0 0,0,0 0,0,1

2 4 4

y z y z x y z− + − + = + + 
 

 

4 3
0, 0, (1)

4

x y zx− + = − 
 

 

(1)  is the required transformation.     

6.   T : R3 →  R3 defined by T (x, y, z) = ( x + y, x – y, 2x + z) . Find 

the range space, null space ,rank and nullity of T and verify rank 

of T + nullity of T = dim(R 3). 

Solution : Let us find the matrix of A of the linear transformation 

w.r.t. the standard basis{ (1, 0, 0), (0, 1,0),  (0,01)} 

T (1, 0, 0) = ( 1 +0,1- 0, 2 + 0) = (1, 1, 2) 

T (0, 1, 0) = (0 + 1, 0-1, 0 + 0) = (1, -1, 0) 

T (0, 0, 1) = (0 + 0, 0 - 0, 0 + 1) = (0, 0, 1) 

∴ The matrix A of T is A = 

1 1 2

1 1 0

0 0 1

 
 − 
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                                                       ~ 

1 1 2

0 2 2

0 0 1

 
 − − 
  

 ( R2- R1) 

This is in the echelon form and there are three non-zero rows . 

∴dim [R(T) ] = 3 .ie, rank of T= 3 

∴R(T) = the subspace generated by (1,1,2),(0,-2,-2),(0,0,1) 

               =  x1 (1,1,2) + x2 (0,-2,-2) + x3(0,0,1) 

              = (x1,x1-2x2,2x1- 2x2+x3) : x1,x2,x3 ∈R 

ie, the range space = {( x1,x1-2x2,2x1- 2x2+x3) : x1,x2,x3 ∈R} 

                               = R3. 
To find N(T)  
Consider T(x1, x2, x3) = ( x1 + x2, x1 – x2, 2x1 + x3) = (0, 0, 0) 

                 ⇒  x1 + x2 = 0, x1 – x2 = 0 2x1 + x3 = 0 

                ⇒   x1 = 0, x2 = 0, x3 = 0. 

∴ T (x1, x2, x3) = {(0, 0, 0)} consisting of only zero 

elements. 

∴ dim [N(T)] = 0 ie, nullity =  0 

and N(T) = {(00,0)}ie., the null space  = {( 0,0,0)}. 

Rank + nullity  = 3 + 0 =3= dim [R3] 

Hence the  rank – nullity theorem is verified  
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7.  T: V3( R)→V4 ( R) is defined by  

    T (e1) = (0,1,0,2),   T(e2)  = ( 0,1,1,0),  T (e3) = ( 0,1,-1,4) 

Find range space , null space ,rank and nullity of T and verify the 

rank nullity theorem.              ( M 2002) 

Solution : The matrix A of L.T is  

A = 

0 1 0 2

0 1 1 0

0 1 1 4

 
 
 
 − 

 

 ~ 

0 1 0 2

0 0 1 2

0 0 1 2

 
 − 
 − 

  R2-R1 and R3 – R1. 

           ~ 

0 1 0 2

0 0 1 2

0 0 0 0

 
 − 
  

 ( R3 + R2) 

 This is in the echelon form. 

There are two non- zero rows in this : 

Hence dim [R(T)] = 2 i.e., rank of T = 2. 

R(T) = The subspace generated by ( 0,1,0,2) and (0,0,1,-2). 

         = {x1 (0, 1, 0, 2) + x2 (0, 0, 1, -2x) : x1,x2 ∈R} 

         = { (0, x1, x2, 2x1 – 2x2) : x1, x2 ∈R} 
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To find N(T)  

T(x1, x2, x3) =  0  

  ⇒T[x1 ( 1, 0, 0) + x2 (0,1,0) + x3 (0, 0, 1) ] = (0,0,0,0) 

   ⇒ x1 T (1,0,0) + x2 T (0,1,0) + x3 T (0,0,1) = (0,0,0,0) 

  ⇒ x1 ( 0,1,0,2) + x2 (0,1,1,0) + x3 (0,1,-1,4) = (0,0,0,0) 

  ⇒  (0, x1+ x2 + x3 , x2 – x3 , 2x1 + 4x3 ) = (0,0,0,0) 

 ⇒  x1+ x2 + x3  = 0, x2 – x3 = 0, 2x1 + 4x3  =  0. 

 ⇒  x1 = -2x3, x2 = x3,x3 = x3. 

∴ N(T) = { ( -2x3 , x3, x3) : x3 ∈  R}. 

∴ dim [N(T)] = 1 i.e, nullity of  T  = 1. 

∴rank of T + nullity of T = 2+1 = 3 = dim [V3 ( R) ]. 

Hence the rank – nullity theorem is verified . 

8.   T:V3 ( R) →V2 ( R) is defined by  

          T (e1) = (2,1);          T(e2)  = ( 0,1);        T (e3) = ( 1,1) 

Find the range space , kernel ,rank and nullity of T and verify 

Rank + nullity = dim (domain) 

Solution : The matrix of T w.r.t. {e1,e2,e3} is  
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           A = 

2 1

0 1

1 1

 
 
 
  

   ~

1 1

0 1

2 1

 
 
 
  

R1 ↔ R3 

                  ~ 3 1

1 1

0 1 2

0 1

R R

 
  ↔ 
 − 

            ~ 3 2

1 1

0 1 .

0 0

R R

 
  + 
  

 

This is in echelon form and there are 2non-zero rows in it . 
∴ dim [R(T)] = 2 i.e, rank of T = 2. 

∴ Range space = { x1(1.1) + x2 (0.1)} 

                               =  { (x1,x1+ x2): x1,x2 ∈R}. 

To find kernel, 

T (x1,x2,x3)         = T [x1e1+ x2e2 + x3e3] 

                           =   x1 T(e1)+ x2 T(e2) + x3 T(e3) 

                           = x1 (2,1) + x2 (0,1) + x3 (1,1) 

                            =  ( 2x1 + x3 , x1 + x2 + x3) 

 T (x1,x2,x3)         = 0 ⇒  (2x1 + x3, x1 + x2 + x3) = (0,0) 

                            ⇒  2x1 + x3 = 0, x1 + x2 + x3 = 0 

                            ⇒  x1 = x1,  x2 = x1 , x3 = -2x1 

∴T (x1,x2,x3)  = 0 ⇒ (x1,x2,x3)  =( x1, x1, - 2 x1)   

          ∴ N(T) = { (x1, x1, - 2 x1) :  x1 ∈  R}. 

in particular ,if x1 = 1 ,N ( T) = {(1,1,-2)} 

∴ dim N ( T ) = 1 i.e, nullity of T = 1 

∴ rank + nullity  = 2 + 1 = 3 = dim (domain) 

Hence the rank –nullity theorem is verified. 
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9.  Determine the linear transformation T:V3 ( R ) →  V2 ( R) 
whose images are generated by the vectors (0,1),(1,1). 
 
Solution : consider the standard basis {(1,0,0),(0,1,0),(0,0,1)} of             
V3 ( R) 

Defines T (1,0,0) = (0,1) 

               T (0,1,0) = (!,1) 

               T ( 0,0,1) = ( 0,0) 

T(x,y,z) =  T [x(1,0,0) + y (0,1,0) + z (0,0,1)] 

               = x T (1,0,0) + y T (0,1,0) + z T (0,0,1) 

              = x (0,1) + y (1,1) + z (0,0) 

              =  ( 0+ y + 0, x + y + 0) 

ie, T(x,y,z) = (y,x + y) 

10.  Find the linear transformation  T:R4 →R3 whose null space is 
generated by ( 1,2,0,-4) , (2,0,-1,-3). 
 
Solution : Define T:  R4 →R3 such that  

 
T ( 1, 2, 0, -4) = ( 0, 0, 0) and T (2, 0, -1, -3) = (0, 0, 0) 

Consider the basis of R4 with (1, 2, 0, -4) and (2, 0, -1, -3) 

As two vectors and including (1, 0, 0, 0), (0,1,0,0),(0,0,0,1) and 

(0,0,0,1)to them . 

i. e, S = {(1,2,0,-4) , (2,0,-1,-3), ( 1,0,0,0),(0,1,0,0),(0,0,0,1) , 

(0,0,0,1)} spans R4 but linearly dependent . 

 To make it linearly independent , delet those vectors in S 
which can be expressed as linear combination of the  preceding 
ones, so that we get the required basis  
 
Consider  ( 2,0,-1,-3) = a ( 1,2,0,-4) 

            ⇒  ( 2,0,-1,-3) = ( a,2a,0,-4a) 
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           ⇒  a = 2 ,2a = 0 ,0 = -1,-4a = -3 which is impossible 

      Consider   ( 1,0,0,0) = a ( 1, 2, 0, -4) + b (2, 0, -1,-3) 

                          = ( a + 2b, 2a, -b, -4a - 3b) 

         ⇒  a + 2b = 1, 2a = 0,-b = 0, -4a –3b = 0. 

               ⇒  a = 1,a = 0,b = 0, which is impossible. 

 

Consider (0,1,0,0) = a (1,2,0,-4) + b ( 2,0,-1,-3) + c ( 1,0,0,0) 

              ⇒ ( 0,1,0,0) = ( a + 2b + c, 2a,-b, -4a –3b) 

              ⇒  a + 2b + c = 0, 2a = 1,-b = 0,-4a –3b = 0. 

              ⇒  a = 
1

2
 , b = 0, a = 0 which is impossible 

Consider ( 0,0,1,0) = a ( 1,2,0,-4) + b (2,0,-1,-3) + c (1,0,0,0) 

        + d (0,1,0,0) 

             ⇒  ( 0,0,1,0) = ( a + 2b + c, 2a + d, -b,-4a-3b) 

             ⇒   a + 2b + c = 0, 2a + d = 0,-b = 1,-4a –3b = 0 

             ⇒  a = 
3

4
,b = -1, c = 

5 3
, .

4 2
d

−=  

∴   ( )0,0,1,0  is expressed as a linear combination of its 

preceding ones.   

Hence ( )( )( ) ( )1,2,0, 4 2,0, 1, 3 1,0,0,0 0,1,0,0− − −  is a basis of 

R4  

For this basis  4 3:T R R→  is defined as   

( ) ( ) ( ) ( )1,2,0, 4 0,0,0 2,0, 1, 3 0,0,0T T− = − − =   

( ) ( ) ( ) ( )1,0,0,0 1,0,0 0,1,0,0 0,1,0T T= =   

∴ T is linear.   

( ) ( )1 2 3, 4, , 0,0,0T x x x x =   
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( ) ( ) ( )
( ) ( )

1 2 3

4

1,2,0, 4 2,0, 1, 3 1,0,0,0

0,1,0,0 0,0,0

x T x T x T

x T

⇒ − + − − +

+ =
  

( ) ( ) ( ) ( ) ( )1 2 3 40,0,0 0,0,0 1,0,0 0,1,0 0,0,0x x x x⇒ + + + =     

( ) ( )3 4, ,0 0,0,0x x⇒ =  

3 40, 0x x⇒ = =  

( ) ( )1 2 3, 4 1 2, , , ,0,0x x x x x x∴ =   

         ( ) ( )1 21,0,0,0 0,1,0,0x x= +  

∴ N ( T ) is spanned by ( ) ( ){ }1,0,0,0 , 0,1,0,0  which is L.I  

∴ nullity of T = 2.  

But ( ) ( )1,2,0, 4 , 2,0, 1, 3− − −  also belong to N ( T ) and are L.I. 

Hence they form a basis of N ( T )   

∴ N ( T ) is generated by ( ) ( )1,2,0, 4 2,0, 1, 3and− − −   

 
1.13 Singular and non-singular linear transformation.   

 
 Definition : Let U and V be two vector spaces over the same 
field F.  A linear transformation :T U V→ is said to be singular,  
If there exists a non-zero vector α such that          T (α) 0′=  and 

:T U V→ is said to be non-zero vector of V.   
 
Theorem  1 :  A linear transformation :T U V→ of vector spaces 

U and V over the same field F, is non-singular if 
and only if T maps every linearly independent 
subset of U onto a Linearly independent subset of 
V 

Proof :  (i) Let T be non-singular. 

Let S = { }1 2,α α αLLL  be a linearly independent subset of U.  

We shall show that ( ) ( ) ( ){ }1 2, nT T Tα α αLLL is linearly 

independent.   

Consider ( ) ( ) ( )1 1 2 2 0n na T a T a Tα α α ′+ + + =LLL   
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 ( )1 1 2 2 0n nT a a aα α α ′⇒ + + + =LLL Q T is linear. 

            1 1 2 2 0n nTa a aα α α ′⇒ + + + =LLL QT is non-singular 

 1 20, 0 0na a a ′⇒ = = =LLL Q S is L.I.  

S′∴  is linearly independent.   
 
(ii)  Conversely, let T map every linearly independent subset of  
U onto a linearly independent subset of V.    

 If α is a non-zero vector of U, then { }α  is L.I and hence by 

hypothesis ( ){ }T α  is L.I.   

 Consequently, T ( ) 0α ′≠    

 Hence ( ) 0 0T α α′= ⇒ =   

 ∴ T is non-singular.   
Theorem 2: A linear transformation  :T U V→ is an           

Isomorphism if and only if T is non-singular.   
Proof :  (i)  Let T be an isomorphism  

∴ T is one-one.   

Let Uα ∈  and ( ) 0T α ′=   

 But ( )0 0T ′=   

 ∴ ( ) ( )0 0T Tα α= ⇒ =   

                        ∴ ( ) 0 0.T α α′= ⇒ =  

  ∴ T is non-singular.  
 
(ii) Conversely, let T be non-singular. 

  ( ) ( ) 0T Tα β⇒ − =  

( ) 0T Tα β⇒ − = Q  is linear 

0 Tα β⇒ − = Q is non-singular 

α β⇒ = . 

∴ T is one-one. 
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Cor I :  A linear transformation on a finite dimensional vector 
space is onto if and only  if T is non-singular 
  

Proof :  T is invertible iff T is one-one and onto and T is one-
one and onto if and only if T is non-singular. 
  

Cor 2 : Let U and V be two finite dimensional vector speaces 
ofve the same field F and let T be a linear transformation from U onto 
V.  Then dim U=dim V if and only if T is non-singular. 

 
Proof : Since dim U = dim[R(T)] + dim[N(T) ] 

∴ dim U = dim V   ⇔ dim U = dim [R(T)] Q  R(T) = V. 

          ⇔ dim[N(T) ] = 0 

               ⇔ dim N(T)  = 0 

           ⇔ T is non-singular. 
 

Worked Examples 

1.  Give an example of a linear map which is one – one  but not 

onto  

Let P(t)  be a vector space of polynomials over the field of  Reals.    

 Define  ( ) ( ):T p t p t→  by ( ) ( )T t p tα α α= ∀ ∈      

 T is one –one  ( ) ( )T t p tα α α= ∀ ∈Q    

         
t tα β
α β

⇒ =
⇒ =

   

 T is not onto Q  there exist no polynomial α  such  

 ( ) ( )T p tα =      

2.  Show that  2 2T R R= →  defined by ( ) ( ), , 2T x y x y x y= − −  
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     is non – singular and find its inverse.   

Solution :  Given    ( ) ( ), , 2T x y x y x y= − −     

 If  ( ) ( ), 2 0,0x y x y− − =    

 
0, 2 0

0

x y x y

x y

⇒ − = − =
⇒ = =

   

∴ T is non – singular      

Let  ( ) ( )1
1 2 1 2, ,T x x y y− =    

 

( ) ( )
( ) ( )

( ) ( ) ( )

1 2 1 2

1 2 1 2 1 2

1 2 1 1 2 2

2 1 2 1 1 2

1
1 2 1 2 1 2

, ,

, , 2

, 2

, 2

, 2 , 1

x x T y y

x x y y y y

y y x y y x

y x x y x x

T x x x x x x−

⇒ =

⇒ = − −
⇒ − = − =
⇒ = − = −

∴ = − − −

   

   (1) is the required inverse        

3.  Give an example of a linear map which is onto but not one – 

one.   

Solution :  Let ( ) :p t  set of polynomials over the field R  

 Define  ( ) ( ):T p t p t→   by   ( ) ( )d
T p t

dt

αα α= ∀ ∈   

It is onto but not one – one because   

 ( ) ( )2 22 4 7 2 4 7T x x T x x+ + = + −   

2 22 4 7 2 4 7x x x x⇒ + + ≠ + −  

           EXERCISE        
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1.  Show that each of the following L.T  is non – singular and find  

     its inverse     

a)  3 3:T R R→  defined by ( ) ( ), , , ,T x y z x y z y z z= + + +   

b)  3 3:T R R→  defined by ( ) ( ), , , ,T x y z x z x y z y z= + + + +  

c) 3 3:T R R→  defined by  

   ( ), ,T x y z = ( )2 , 2 ,2 2 3x y z x y z x y z+ − + + + −    

 

Answers 

1.  a)  T-1 = ( x – y, y – z, z) b)  T-1 = ( y – z, y – x, x – y + z) 

     c)  T-1 = ( - 8x – y + 5z,  5x + y – 3z,  z – 2x ) 

 
1.14   Eigen Values and Eigen Vectors of a linear transformation 
 
 Definition :  Let A be a square matrix over a field. F.  The 
matrix A - Iλ  where I is the unit matrix of the same order as that of 
A and λ  is an indeterminat, is called the Characteristic matrix of A. 
 
 Definition : If A is a square matrix of order n x n then the 

determinant A Iλ−  is a non-zero polynomial of degree n in λ .  

This polynomial is called the Characteristic polynomial of A. 
 

Definition :  The equation A Iλ−  = 0 is called the 

Characteristic equation of A or Eigen equation of A. 
 

Definition :  The roots of the characteristic equation A Iλ−  

= 0 are called the Characteristic roots or Eigen Values of A. 
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If 

11 12 1

21 22 2

1 2

.........

.........

.............................

.............................

.........

n

n

n n nn

a a a

a a a

A

a a a

=  

Then A Iλ−  = 0 

11 12 1

21 22 2

1 2

.........

.........

............................. 0

.............................

.........

n

n

n n nn

a a a

a a a

a a a

λ
λ

λ

−
−

⇒ =

−

 

 

11 22( )( )................( )nna a aλ λ λ⇒ − − − + terms with atmost (n-2) 

factors of the form iia λ−  
1 2

1 2( ) ( 1) [ .........n n n n
n nc c cλ λ λ λ− −

− −∴ = − + + + 1 0] 0c cλ+ + =  

where 1 2 1 0, .................... ,n nc c c c− −  are constant. 

 
Worked Examples : 
(1)  Find the eigen values of the matrices 

 (i) 
7 6

5 8

 
 
 

 (ii) 

1 0 1

1 2 1

2 2 3

− 
 
 
  

 

Solution :  (i)  Let A = 
7 6

5 8

 
 
 

 

7 6

5 8
A I

λ
λ

λ
− 

∴ − =  − 
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7 6
0 0

5 8
A I

λ
λ

λ
−

∴ − = ⇒ =
−

 

(7 )(8 ) 30 0λ λ⇒ − − − =  
2 15 26 0λ λ⇒ − + =  

( 2)( 13) 0λ λ⇒ − − =  

2, 13λ λ⇒ = =  

(ii)  Let A = 

1 0 1

1 2 1

2 2 3

− 
 
 
  

 

1 0 1

1 2 1

2 2 3

A I

λ
λ λ

λ

− − 
 ∴ − = − 
 − 

 

(1 )[(2 )(3 ) 2] 1[2 2(2 )] 0A Iλ λ λ λ λ− ⇒ − − − − − − − =  
2(1 )( 5 4) ( 2 2 ) 0λ λ λ λ⇒ − − + − − + =  

2 3 25 4 5 4 2 2 0λ λ λ λ λ λ⇒ − + − + − + − =  
3 26 11 6 0λ λ λ⇒ − + − + =  

3 26 11 6 0λ λ λ⇒ − + − =  
1,2,3.λ⇒ =  

∴ the Eigen values are 1,2,3. 
 
(2)  If A is any square matrix, then prove that A and AT have the 
same eigen values. 

Solution :  Consider     ( ) ( )T TTA I A Iλ λ− = −  

    TA Iλ= −  

 But ( )T TA I A I A Iλ λ λ− = − = −   

 ∴ A and AT have the same characteristic (or Eigen) equation 
and hence the same Eigen values.   
 



       Linear Algebra                                      
 

137

Definition :  Let  :T V V→  be a linear transformation  of an n 
dimensional vector space V, and A be the matrix of the linear 
transformation T.  Then the characteristic equation (or Eigen 
equation) of T is defined as the characteristic equation of A i.e., 

0.A Iλ− =  The roots of the characteristic equation (or the equation) 

0A Iλ− = are called the characteristic roots of the Eigen values of 

T.   
 Definition  :  If :T V V→  is a linear transformation of an  
dimensional vector space V, A is an n × n matrix of T, and λ is an 

Eigen value of T, then the vector ( )1 2, nx x x x= LL  which satisfies 

the equation Ax xλ=  is called the Eigen vector corresponding to the 
value of λ.                                           

The vector ( )1 2, nx x x x= LL  can be represented as the 

column 

1

2

n

x

x
matrix

x

 
 
 
 
 
  

M
      

                                   
The equation Ax xλ=  for the values of 1 2, nλ λ λ λ= LL in 

the  
Matrix for is    

1 1
11 12 1

2 2
21 22 2

1 2

n

n

n n nn
n n

x x
a a a

x x
a a a

a a a
x x

λ
λ

λ

   
     
     
     ⋅ ⋅
  =   ⋅ ⋅     
     ⋅ ⋅
      

      

L

L

L L L L

L L LL

L

  

       n × n   
 

 The set of all vectors nx R∈  which satisfy the equation  
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Ax xλ=  fro a given λ forms a subspace of Rn called the Eigen 
space of A corresponding to λ.   
 
Working rule to find the Eigen vectors of a L.T.     
(i)  Find the matrix A of the linear transformation : .T V V→  

(ii)  Find the Eigen equation of A i.e., 0A Iλ− =    

(iii) Find the Eigen values 1 2 3, ,λ λ λ λ= LL  by solving the  

equation 0A Iλ− =       

(iv) Then to find the Eigen vector corresponding to 1,λ λ=   

put 1λ λ=  in [ ] 0.A I xλ− = we get n equations in n unknowns. 

The solution of this corresponding to λ1.     
  

Similarly, determine the Eigen vectors corresponding to  

2 3, .λ λ λ λ= =  etc.  

   
Worked Examples :     
 
(1)  Find the basis for the Eigen space of the L.T.   

      2 2:T R R→  defined by ( ) ( ), , .T x y x y y= +    

      Solution :  First, we shall find the matrix of T w.r.t standard 

basis ( ) ( ){ }1,0 , 0,1   

     
( ) ( )
( ) ( )
1,0 1,0

0,1 1,1

T

T

=

=
  

      ∴     The matrix of the L.T. is  
1 0

1 1
A

 
=  
 

       

     Eigen equation of A is    0A Iλ− =      

     i.e.,  
1 0

0
1 1

λ
λ

−
=

−
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( )( )1 1 0 0

1, 1

λ λ
λ λ

⇒ − − − =
⇒ = =

   

    Let  ( )1 2,x x x=  be a vector in R2      

    Then  Ax xλ=    

    ( ) 0A Iλ⇒ − =    

        
( )

( )
( ) ( )

1

2

1

1 2

1 1 2

1 0 0

1 1 0

1 0

1 0

1 0, 1 0.

x

x

x

x x

x x x

λ
λ

λ
λ

λ λ

−     
⇒ =    −    

−   
⇒ =   + −   

⇒ − = + − =

  

        Put 1,λ =  we get  1 20, 0.x x= =    

        ∴  The Eigen vector is (0, 0) 1 

        The Eigen space is { (0,0) }     
   

(2)  Find the Eigen of the L.T.  3 3:T R R→  defined by  

 ( ) ( ), , 2 , ,2 4T x y z x y y z y z= + − +    

Solution :  ( ) ( )1,0,0 2,0,0T =   

        ( ) ( )0,1,0 1,1,2T =  

        ( ) ( )0,0,1 0, 1,4T = −      

            ∴The matrix of L.T is 

2 0 0

1 1 2

0 1 4

A

 
 =  
 − 

   

 ∴ Eigen equation is   0A Iλ− =  

  

2 0 0

1 1 2 0

0 1 4

λ
λ

λ

−
⇒ − =

− −
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( ) ( )( )
( )( )
( )( ) ( )
( ) ( )

2

2

2 1 4 2 0

2 5 6 0

2 2 3 0

2 3 0

2,2,3.

λ λ λ

λ λ λ

λ λ λ

λ λ
λ

⇒ − − − + =  

⇒ − − + =

⇒ − − − =

⇒ − − =
⇒ =

   

 ∴  Eigen values are 2,3  
 Consider Ax xλ=    

 i.e., ( ) 0A I xλ− =    

 i.e.,  
1

2

3

2 0 0 0

1 1 2 0

0 1 4 0

x

x

x

λ
λ

λ

−     
     − =     
     − −     

   

 i.e., ( ) 1 2 3 12 0 0 0 0x x x xλ− + + = ⇒ =     

   ( ) ( )1 2 3 2 31 0 1 2 0x x x x xλ λ+ − + = ⇒ − + =    

( ) ( )1 2 3 2 30 4 0 4 0x x x x xλ λ− + − = ⇒ − + − =   

  Put 2λ =  2 3 2 32 0 2x x x x∴− + = ⇒ =    

 3 2, 2If x k x k∴ = =    

 ∴ the vector is (0,2k,k) ∴ (0,2,1)` is a basis of the  

 Eigen space corresponding to λ = 2  

 Put  λ = 3, then 2 3 2 32 2 0 0x x x x− + = ⇒ − + =  and  

 2 3 2 30x x x x k− + = ∴ = =     

 ∴ the vector is (0,k,k). ∴ (0,1,1) is a basis of the 
Eigen space corresponding to λ = 3.  
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(3)  Find the Eigen values and Eigen vectors of the linear   
transformation  3 3:T R R→  defined by ( ) ( )1 1,1,0 ,T e =  

( ) ( ) ( ) ( )2 30,1,1 1,2,1T e T e= =     

Solution :  The matrix of the L.T. is   

 

1 1 0

0 1 1

1 2 1

A

 
 =  
  

   

∴ The Eigen equation is 0A Iλ− =    

 

1 1 0

0 1 1 0

1 2 1

λ
λ

λ

−
⇒ − =

−
   

 ( ) ( ) ( )2
1 1 2 1 0 1 0 0λ λ ⇒ − − − − − + =   

 ( )( )21 2 1 1 0λ λ λ⇒ − − − + =  

 2 3 22 1 2 1 0λ λ λ λ λ⇒ − − − + + + =  

 3 23 0λ λ λ⇒ − + =  

 
3 9 4

0,
2

λ λ ± −
⇒ = =     

        
3 52

2

±=  
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∴  the Eigen values are 0λ = ,
3 5 3 5

, .
2 2

± −
    

( ) 0Ax x A I xλ λ= ⇒ − =   

 
1

2

3

1 1 0 0

0 1 1 0

1 2 1 0

x

x

x

λ
λ

λ

−     
     ⇒ − =     
     −     

    

 ( ) 1 21 0x xλ⇒ − + =     

 ( ) 2 31 1 0x xλ− + =  

         ( )1 2 31 2 1 0x x xλ+ + − =  

Put λ = 0.  ∴   1 2 0x x+ =      --(1) 

  2 3 0x x+ =      --(2)   

    1 2 32 0x x x+ + =    --(3)   

(1)  is 1 2 2 10.x x x x+ = ∴ = −      

∴ from (2) we get 3 2x x= −   

 i.e., 3 1x x=   

∴ The vector ( ) ( )1 2 3 1 1 1, , , ,x x x x x x= −     
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∴  ( ){ }1, 1,1′−  is a basis of the subspace corresponding to λ=0  

Put 1 2

3 5 3 5
1 0

2 2
x xλ

 + += ∴ − + =  
 

  --(4)  

       
3 5

1
2

 +−  
 

2 3 0x x+ =   --(5)  

 1 2 3

3 5
2 1 0

2
x x x

 ++ + − =  
 

   --(6)   

From (4)  2 1 1

3 5 1 5
1

2 2
x x x

   + += − − =      
   

    

From (5)  3 1 1

3 5 1 5
1

2 2
x x x

   + += − − =      
   

   

         1

1 5 1 5

2 2
x

  + +=     
  

   

         i.e., 3 1 1

6 2 5 3 5

4 2
x x x

+ += =    

∴  The vector is 1 1 1

1 5 5 3
, ,

2 2
x x x

′    + +
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  1

1 5 5 3
1, ,

2 2
x
 + +=   
 

   

1 5 5 3
1, ,

2 2

 ′ + + ∴    
   

 is a basis of the subspace.   

Put 
3 5

2
λ −=   

1 2

3 5
1 0

2
x x

 −∴ − + =  
 

     ---(7) 

1 2

3 5
1 0

2
x x

 −− + =  
 

     ---(8) 

     1 2 3

3 5
2 1 0

2
x x x

 −+ + − =  
 

   ---(9)  

2 1 1

1 5 1 5

2 2
x x x

   − + −= − =      
   

        

                               1 1

6 2 5 3 5

4 2
x x

   − −= =      
   

     

∴ The vector ( )1 2 3 1 1 1

1 5 3 5
, , , ,

2 2
x x x x x x

′    − −=             
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      1

1 5 3 5
1, ,

2 2
x

′ − −=   
 

   

1 5 3 5
1, ,

2 2

 ′ − − ∴    
   

 is a basis of the subspace.   

EXERCISE 
I   1)  Show that 3 2( ) ( )V R V R→   defined by   

(i)  ( ) ( ), , ,T x y z x y y z= + +  is a linear transformation (N 03)  

(ii)  ( ) ( ), , ,T x y z x y y z= − −  is a linear transformation   

(iii) ( ) ( ), , ,T x y z x y z x y= + + −       is a linear transformation  

(N 03) 

(iv)  ( ) ( ), , 2 3 ,3 4T x y z x y y z= − +  is a linear transformation     

(v)   ( ) ( ), , ,T x y z y x y z= − −  is a linear transformation  (095)  

2)  Prove that  3 3:T R R→  defined by  

(i)  ( ) ( ), , , , 2T x y z x y x y x z= + − +  is a L.T         ( M 93 )  

3)  Prove that  ( ) ( ), , ,T x y x y x y y= + −  is a linear transformation.

                                 ( A 98)  

II  1) Verify whether the following are linear transformations: 

(i) T: V2(R) →V3(R) defined by   T(x, y) = (x, y, 0)    

(ii)  T: V2(R) →V2(R) defined by   T(x, y) = (2x, y)    
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(iii)  T: V2(R) →V2(R) defined by   T(x, y) = (x2, y)    

(iv) T: V2(R) →V2(R) defined by T(x, y) = (3x+2y, 3x-
4y)    

(v) T: V2(R) →V2(R) defined by T(x, y) = (x+y, y)    

(vi) T: R2 →R2 defined by   T(x, y) = (2x+y, x-y)    

(vii)  T: R3 →R2 defined by T(x, y,z) = (2x+y, 3y-4z)    

(viii)  T: R3 →R1 defined by T(x, y, z) = 2x-3y+4z   

(ix) T: R3 →R3 defined by T(x, y,z) = (x,y,z)    

(x) T: R3 →R3 defined by T(x, y,z) = (x+2y-z, y+z,  

        x+y-2z)    

(xi) T: R2 →R3 defined by   T(x, y) = (x+y, 2y, x+1)    

(xii)  T: R2 →R4 defined by   T(x, y) = (x,y,y,y)    

(xiii)  T: V3(R) →V2(R) defined by   T(x, y,z) = (x+z, 
x+y+z)    

(2)  Find the linear transformation : 

(i) T: R2 →R1 dif T(1, 1) =3, T (0, 1) = - 2 

(ii)    T: R2 →R2 if  T(1, 1) =  (3, 0), T (2, 1) = (1, 2) 

(iii)  T: R2 →R4 if T(1, 1) =(1, 1, 1, 1),   

 T (1, -1) =  (1, -1, -1, -1) (3, 0) 
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(iv) T: V2(R) → V3(R)    if   T(1, 2) = (3, -1, 5),              
T(0, 1) =        (2, 1, -1)  

(v) T: R2 →R2  if T(2, 1) = (3, 4), T(-3, 4) = (0, 5)  

(vi) T: R2 →R2  if T(1, 1) = (1, -1,1, -1), T(-1, 2) =   (-1, -
2, -1, -2)  

(vii)  T: R3 →R3  if T(1, 0, 0) = (4, 5, 8), 

 T(1, -1, 0-) = (8, 10, 18) ;   T(0, 1, 1) = (-3, -4, -7)  

(viii)  T: R3 →R3  if T(1, 1, 1) = (1, 1, 1) 

 T(1, 2, 3) = (-1, -2, -3) ;     T(1 ,1, 2) = (2, 2, 4)  

(ix) T: R2 →R3   if       T(1, 0) = (1, 0, 1),        T(0, 1) = (-
1, 1, 1)  

(x) T: R3 →R3   if       T(1, 1, 1) = (2,1, 1), T(1, 2, 1) = (3, 
2, 1)  T(1, 0, 0) = (1, 0, 0)  

(3)  Let M(R) be a vector space of all n x n matrices over R and B 
be any fixed non-zero matrix of M(R).    Show that                            
T : M ( R ) → M ( R ) defined by    (i) T ( A ) = AB – BA,   (ii) 
T(A) = BA  (iii)  T ( A ) = AB2 + BA are linear transformations 
and  (iv)  T(A) = B + A is not linear unless B is a zero matrix. 

(4)  (i) Show that T : R2 → R2 defined by T(x, y) = ( x + 2, y + 3) 
is not linear. 

        (ii) Show that T : R→ R defined by T(ab) = ab is not linear 

(5)  If V is the vector space of all real valued functions defined on 
(0, 1), then show that T : V→ R2 defined by  T(f) = {f(0), f(1)} is 
linear. 

(6)  Find  ( ), ,x y z   when L.T  is defined by  
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( )1,1,1 3T =  , ( )0,1, 2 1,T − =   ( )0,0,0 2.T = −    

(7)  Consider the basis { }1 2 3, ,s x x x=  of R3 where ( )1 1,1,1x =  

      ( ) ( )2 31,1,0 1,0,0 .x x= = Express ( )2, 3,5−  in terms of the   

  vectors 1, 2 3,x x x         

8)  For the following linear transformation, find the range space, 

null space, rank, nullity and verify the rank – nullity 

theorem. 

(i) T: V3(R)  → V3(R)      defined by     T(x, y, z) =      
(x+ y, x – y, 2x + z)    

(ii)  T: V3(R) →V2(R)   defined by T(x, y, z) = (y-x, y-z) 

(iii)  T: V3(R) →V2(R) defined by   

    T(e1) = e1 + e2 + e3,  T(e2) = e1 - e2 + e3 

    T(e3) = e1 - 3e2 + 3e3 

(iv) T : R3 → R4 given by T (1, 0, 0) = (0, 1, 0, 2)  

T(0, 1, 0) = (0, 1,1, 0), T(0, 0, 1) = (0, 1, -1, 4) 

(v) T: R3 → R3 given by T (x1, x2, x3) = (x1, x3, x2) 

(vi) T : R3 → R3 given by   

T(x, y, z) = x + y, x + z, y + z 

(vii)  T : R3 → R3 given by  T(e1 ) =e1 –e2 ; T(e2 ) =2e1 +e3;  

T(e3) = e1 + e2 + e3 
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(viii)  T : R3 → R2 given by   T(e1 ) = (2, 1),  T(e2 ) = (0, 1), 
T(e3 ) = (1, 1) 

(ix) T : R3 → R3 given by 

T(1, 0, 0) =  (1, -1, 0), T(0, 1, 0) =(2, 0, 1),      

 T(0,0, 1) = (1, 1, 1) 

(x) T : R3 → R2 given by  T(x, y, z) = (x + y, y + z) 

(9)  Find a linear transformation T : R3 → R4 whose range space is 
generated by (1, 2, 0, -4) and (2, 0, -1, -3) 

(10)  Find a linear transformation T : R3 → R3 whose range space 
is generated by (1, 2, 3) and (4,5,6) 

(11) Find the linear transformation T : R4 → R3 whose kernel is 
generated by (1, 2, 3, 4) and (0,1, 1, 1) 

(12)  Find the linear transformation T : R3 → R3 whose null  space 
is generated by (1, 1, -1) and (1, 2, 2) 

(13)  Find the linear transformation T : R3 → R3 whose range  
space is spanned by {(1, 2, 2) , (1, 0, -1)} 
 
(14)  Find the Eigen values and Eigen vectors of the following linear 
transformations: 

(i) T: V2(R)  → V2(R) defined by T(1, 0) = (1, 2) ;    
T(0, 1)  = (3, 2) 

(ii)  T: V2(R)  → V2(R) defined by T(e1) = (1, 4),       
T(e2) = (2, 3) 

(iii)  T: R3   → R3    defined by     T(e1) = (4, 0,1),       
T(e2) = (-2, 1, 0), T(e3) = (-2, 0, 1) 

                College Mathematics VII 
 
150 
 

(iv) T: R3   → R3   defined by   T(1, 0, 0) = (1, -3, 3),   
T(0, 1, 0) = (3, -5, 3), T(0, 0, 1) = (6, -6, 4) 

(v) T: R3   → R3 defined by T(1, 0, 0) = (-3, 1, -1),     
T(0, 1, 0) = (-7, 5, -1), T(0, 0, 1) = (-6, 6, 2) 

(vi) T: R3   → R3  given by   T(e1) = (3, 2, 4),             
T(e2) = (2, 0, 2),   T(e3) = (4, 2, 3) 

(vii)  T: R3   → R3  given by 

T(x, y, z) = (3x + 2y + z, x + 4y + z, x + 2y + 3z) 
                     (A 97) 

(viii)  T : V3 ( R ) → V3 ( R ) given by  

T(x, y, z) = ( x, x + y, z) 

(ix) T : V3 ( R ) → V3 ( R ) given by 

T(x, y, z) = ( 3x, 2y +z, -5y-2z) 

(x) T: R3   → R3  given by 

T(x, y, z) = (x + 3z, 2x + y – z, x – y + z) 

Answers 

I.   6.  8 3 2x y z− −  7.  1 2 35 8 5x x x− +      

II (1)   (iii), (xi) are not linear.  The others are linear    

(2)       (i)T (x, y) = 5x – 2y,  (ii) T( x, y) = 
5 4 2

,
3 3

y x x y− − 
 
 

 

  (iii) T(x, y) = (x, y,y, y),   
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(iv) T ( x, y) = (-x + 2y , -3x + y, 7x - y) 

(v) T (x, y ) = 
12 9

, 2
11

x y
x y

+ + 
 

  (vi) T(x, y) = (x, -y, x, -y) 

(vii) T(x, y, z) = (4x – 4y + z, 5x – 5y + z,   8x – 10y + 3z) 

(viii)  T(x, y, z) = (4x – 4y + z, 5x – 5y + z, 8x – 10y + 3z) 

(ix) T(x, y) = (x-y, y, x + y) 

(x)  T(x, y, z) = (x + y, y, z) 

6. 8x – 3y – 2z,  (7)  5x1 – 8x2 + 5x3 

8.  (i)  R(T) = {(x,  x + y, 2x + y)}, x , y ∈ R  

 N(T) = {(0, 0, 0)}     Rank = 3,   nullity = 0 

(ii)  R(T) = subspace spanned by {(1, 0), (0, 1)} = V2 (R )  

 rank = 2,  nullity = 1 

(iii) {(1, 1, 1), (1, -1, 1), (1, -3, 3)} rank =3, nullity = 0 

(vi) R(T) = subspace spanned by {(0, 1, 1,0), (0, 1, -1,4)},  

 N(T) = {(-2, 1, 1)} 

(v) R(T) = subspace spanned by {(1, 0, 0), (0, 1,0),                  

       (0, 0, 1)},   N(T) = {(0, 0, 0)}  rank = 3,  nullity = 0 

(vi)  R(T ) = R3, N (T) = {(0, 0, 0)} rank = 3,  nullity = 0 

(vii)  R(T) = subspace spanned by {(1, 1, 0), (2, 0, 1)},  

 N(T) = {(1, 1, -1)}   Rank = 2, nullity = 1 
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(viii)  R(T) = subspace spanned by {(0, 1), (1, 1)} 

 N(T) = {(1, 1, -2)}    Rank = 2,   nullity = 1 

(ix)  R(T) = subspace spanned by {(1, 1, 0), (2, 0, 1)}, 

 N(T) = {(1, 1, -1)}   Rank = 2,  nullity = 1 

(x) R(T) = subspace spanned by {(1, 0), (0, 1)} 

 N(T) = {(1, -1, 1)}   Rank = 2,  nullity = 1 

9.  T(x, y, z) = (x + 2y, 2x-y, -4x-3y) 

10.  T(x, y, z) = (x + 4y, 2x+ 5y, 3x+6y) 

11.  T(x, y, z) = (x + y –z, 2x + y – t , 0) 

12.  T(x, y, z) = (0, 0,  
4 3

4

x y z− +
) 

13.  T(x, y, z) = (2 + y, 2y, 2y - x) 

14. (i) λ = 4, -1; (2, 3), (1, -1) (ii) λ = 5, -1; (1,1), (-2, 1) 

  (iii) λ = 1, 2, 3 ; (0, 1, 0 ), (1, -2, -2) 

      (iv) λ = 4, -2; (1, 1,2), (0, 1, 1) 

 (v)  λ = 2, 4, -2 ; (1, 1, -4) ;  (1, 1, 0)  

 (vi) λ = 0, -1, 7 ; (1, 2, -2)  (vii) λ = 2, 6 ;  (1, 2,- 3), (1, 2,1) 

 (viii)  λ = 1 ; (1, 0, 2) (ix)  λ = 3 ; (1, 0, 0) 
  
 (x)  λ = 2; (7, 6, -15)  


