Lagrangian and Hamiltonian

LAGRANGIAN AND HAMILTONIAN

A. Constraints and Degrees of Freedom .

A constraint is a restriction on the freedom of motion of a system of particles in
the form of a condition. The number of independent ways in which a mechanical
system can move without violating any constraints which may be imposed on the
system is called the number of degrees of freedom of that system. In other
words, number of degrees of freedom is the number of independent variables
that should be specified in order to describe the positions and velocities of all the
particles in the system which does not violate any condition.

The motion of a free particle can be specified by three independent coordinates
such as the Cartesian coordinates %, y and z or spherical polar coordinates r, 8, @
and so on. Hence, the free particle has three degrees of freedom. For a particle
constrained to move only in a plane, like the particle executing circular motion
or a projectile, two independent coordinates x, y or r, 6 is sufficient to describe
the motion. Hence, the particle has two degrees of freedom. A particle confined
to move along a curved path has only one degree of freedom.

When the motion of a system Is restricted in some manner, constraints are said
to have been introduced. A bead sliding down a wire or a disc rolling down an
inclined plane are some examples of constrained motion.

Every condition of constraint reduces the number of degree of freedom by one.
Thus, a system having N particles moving independent of one another has 3N
degrees of freedom and if their motion is restricted by k conditions of
constraints, the true number of degrees of freedom will be only (3N - k).

When the conditions of constraints can be expressed as equations connecting
the coordinates of the particles, the constraints are called holonomic.

The general constraining equation is of the form
fo(ry, 1,13, 0,1, t) = 0

In the case of a simple pendulum moving in the X-Y plane, the two equations of
constraints are :

x% 4+ y? = 1% = const

0 .
z=0 g
In the case of the simple pendulum shown, ud 8 N/
only one variable q is sufficient to locate the
P(xy)
position of the oscillating bob P. Vv
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When the conditions of constraints cannot be expressed as an equation but may
be expressed as an inequality, then the constraints are called non-holonomic.

The equation of constraint in the case of a particle moving on or outside the
surface of a sphere of radius ais x% + y? + z2 > a? if the origin of the
coordinate system coincides with the centre of the sphere. This inequality is a
non-holonomic constraint.

B. Scleronomous and Rheonomous constraints.

Scleronomous constraints are those which are independent of time. Rheonomous
constraints are those which are explicitly dependent on time.

The oscillations of the bob of a simple pendulum whose length is constant is
scleronomous whereas whose length varies with time, the constraint is
rheonomous.

C. Generalised coordinates.

Consider a system of N particles where the motion is restricted by k conditions
of constraints expressed as k equations connecting the 3N coordinates. The
position coordinates of particles expressed as (X1, y1,Z1), (X2, y2,22),... can now be
relabelled as (x1, X2,X3), (X4, X5,X6),.... Thus, the coordinates of the N particles will
now run as (X1, X2X3, -..,X3N)

Instead of (x1, y1,Z1),-.. (Xn, yN,Zn). The dynamics of the system can be understood
by solving the 3N equations

dzxi
mi o T Fici=1,2,.5)

In this case, mi = m2 = m3 = mass of first particle
m4 = ms = me = mass of second particle
and so on.

However, these 3N equations are not independent since the conditions of
constraints expressible as k equations connecting the coordinates xi’s

{i.e., fi(xq,x5,x3, ..., X3y) = a; } must also be taken into account in obtaining
consistent solutions.
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It is possible that a new set of coordinates q1,92,93, -, qn can be chosen properly
and expressed in terms of the original set of coordinates (x;) such that their
number n is equal to the number of degrees of freedom {n=3N-k}.

The equations of motion described in terms of new coordinates (q’s) will be
independent since the choice of q’s is such that they are no longer connected to
each other by an equation of constraint. The new coordinates q’s are known as
generalised coordinates. The generalised coordinates need not have the
dimensions of length.

Consider the oscillations of the bob of a simple pendulum of length I oscillating in
the X-Y plane to be described by the coordinates x and y with the origin O
coinciding with the point of suspension. The coordinates x and y are not
independent of one another but are connected by the equation of constraint as

x? +y? =1? = const X
0 >
The bob though moves in a plane has only one degree of freedom.
L~ 1
Its motion can be described in terms of x and y by ]
. _ -1 i . -
the relation 6 = tan " The angle 0 serves as the generalizec! y | P(xy)

coordinate in this case.
Generalised Force.

The generalised coordinates (q ‘s) may undergo displacement from the initial
values (q1,92,93, -, qn ) to their neighboring values (q1+6q4, q2 + 6q5, g3+ 643, -
, Qn+8¢,) over an interval of time §t. The corresponding changes in the original
coordinates can be expressed as

S

sy = 2% sa 495 s+ L+ 0 s 0% s
1 aql ql aqz QZ aqn Qn {zl aq( q(
n
bty = 22 50 492 504+ 22 5 9%z 5
2 aql ql aqz QZ aqn Qn (zl aq( q{
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The above expressions may be written in a compact form as follows :

s _ axi 5 N axi
xl - . ql aqz

Sgy+ 25 s Zn: 0% e (=123, ...,3N)
. . = —. i=123, ..,
aql q: aqn dn & aqz q{

For a particle undergoing a displacement &r under the action of force F, the
work done is given by

6W = F.br = F,6x + E, 8y + F,6z

This work in the new notation can be expressed as

3
oW = z Fi . 5xi
i=1

and for a system consiisting of N particles, we can write

3N
oW = z Fi . 5xi
i=1
Substituting for §x; we get
3N n
SW z F z 0%
= i 5..94¢
i=1 (=1 94
Hence,
¢

where Q; = X, F; 2_:; = Generalised force

D’Alembert’s Principle.

Consider a system described by n generalised coordinates (q1,92,93, .-, Qn)
undergoing a displacement such that it does not take any time and that it is
consistent with the constraints of the system. Such displacements are called
VIRTUAL because they do not represent actual displacements of the system.
Since there is no actual motion of the system, the work done by the forces of
constraints in such a virtual displacement is zero.

If a particle is constrained to move on the surface of a smooth sphere, then the
force of constraint is equivalent to the reaction of the surface. In this case, the
virtual displacement is taken at right angles to the direction of the force so that
work done by the force during the virtual displacement is zero.

VIJAYA COLLEGE Page 4



Lagrangian and Hamiltonian

If 67; is the virtual displacement of the ith particle on which a resultant force F;
acts and the system is in equilibrium, then the virtual work done F; - §1; = zero

The resultant force on the ith particle is made up of two forces
F{* — the applied force
fi — the force of constraint

Hence, we can write F; = Ff* + f;
Therefore, we get Y, Ff-8r; + f; - 61 = zero

Let us assume that virtual work done by the forces of constraints is zero

Zfl--Sri = zero

The virtual displacements are such that the total work done by the forces of
constraints is zero. The above equation will not hold good if the frictional forces
are present. This is because, the frictional forces act in a direction opposite to
that of the displacement.

Principle of Virtual Work states:

“ Virtual Work done by the applied forces acting on a system in equilibrium is zero,
provided no frictional forces are present”

Z Ff# - 8r; = zero
i

Most of the mechanical systems are not in static equilibrium but are in dynamic
equilibrium. Hence, the principle must be modified to include dynamic systems
also.

We can write F; = p, and hence F; —p, = Zero.The system appears to be in
dynamic equilibrium under the action of the applied force F; and an equal and
opposite ‘effective force’ p, . This effective force is called ‘Kinetic Reaction’.

We can now generalise the principle of vitual work and can express:
Z(Fi —p,) - 6r; = zero
i

The above expression is called D' Alembert'sPrinciple.
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Interms of geenralised coordinates, Y;Q;-8q; = zero

POTENTIAL and KINETIC ENERGIES.

The generalised coordinates q’s need not have the dimensions of length and the
generalised force Q¢ need not have the dimensions of force. But the product
Q;6q; must necessarily have the dimensions of work. The rectangular

components of the force acting on a particle in a conservative force field is given

by F; = — (2—;) where V is the potential energy function. The expression for

generalised force in a conservative force field can be expressed as

0’“! -y o
Zl l - axl aqz (1)

Since V is a function of x’s, we have

av oV 0xq vV 0Ox, vV Ox3 vV  Oxzy __ v 0Ox;

6q(_6x1 d2q¢ 0x; 0qg 9x3 0q¢ Ox3y 0qg 0x; 0qg

eere(2)

Comparing equations (1) and (2), the generalised force is given in terms of
potential by

av

Q=—7—-

aq€

The kinetic energy of the system of N particles is given by :

SN
T = Z Emixlz ------- 3)

i=1

Generalised coordinates are expressed in terms of the coordinates x’s and hence x’s
can be expressed in terms of g’s as :

X; = fi(QL qz, 493, -, qn)

Therefore,
dx; _ o _ 0% 0% - ax, ax; g
—_— = X=—'1Tag4+H—0. 4+ +—1 0 =V}  — g, ——mmm--= 4
dt XI aql ql aqz q2 aqn Z( 1 aq( ( )
The quantities q ’5 are called generalised velocities. Taking partial derivative of
X wrt ¢, we get gﬁ This result may be remembered by looking at it as the
a4z

cancellation of dots.
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. : . 0% . Ox
Multiplying by %, , we get x; - a_:'l =x; 'a_:l'
4 4

. .y o d (L. 0x d( . ox
Differentiating wrt t': — (xl : %) =< (xl : ﬁ)
:

aq(
. axi . % __________
- M 0_615 13 da; (5)
d . 9%\ _ df1ox*\ _df 8 (x?*
Also, LHS = E(Xl 'a—q.z) = E(za—q() =7 (0%( 5 ))
. d{ a (%*\\ _ .. 0% d (%2
Equation (5) becomes E(a_q'( (T)) = x‘a_q( + 6_(1((7) --------- (6)
Difterential Equation 4 wrt q4
a?fl _ ng 0%xi .
0q, ~i=10q,9q;
d (9x;\ _ ny 9%x; .
But  i(5e) = Tlimar %

Comparing the above two equations :

d(0x) _ 9% _ 0 (ax\

i Ga) =5 aqg( ) 7)
This result shows that d and d can be interchanged.

Lagrange’s equations of motion.

Multiplying equation (6) above by m;, the mass of ith coordinate, we get :
a9 X_LZ) = m.i & i( ﬁ) _______
dt (aq'( (ml 2 ) = MiX, aqg + aqg mi 2 (8)

By Newton’s law, F; = m;X,

Substituting in the above equation and summing over all values of i, we get

dl o [+ %2 o ox; %
(RS ))- S (Sims
dt aq(<i=1 ' 2 - lan aq(

=1
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d(or\_, o
dt \aq; = 94,

d(oT\ oT

These are called Lagrange’s Fquations of Motion.

Hence,

aT . . . :

3g; — Pals called generalised momentum or conjugate momentum. Potential
¢

energy is a function of only g’s.

LetL=T-V

oK
Therefore — = —( V)=—
oq; 9qg aq¢

oL or av
Hence, —(—) —=Q=—T
at\aq;) ~ daz QO dag

=>d oL 4 (T-VvV)=0

d(oL\ dL _
dt\dq,;) dq;

This is called Lagrangian function of the system or simply Lagrangian.
Lagrangian for Simple Pendulum.

Let 8 be the angle made by the string with the vertical at an instant of time. The KE
of the bob is given by

T = %mv2 = %mlé’2 where m = mass of the bob
PE of the bob about the mean position A: V = mg(0A — 0C) = mgl(1 — cos0)

Lagrangian,L=T-V =%mléz —mgl(1 — cosf) X

Lagrangian equation of motion :

aL\ oL . . .
(ae) i 0 as 0 is the generalised coordinate.
aL

5 = = ml?6 and = —mglsind
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d (0L d . ..
a(&) = ﬁ(mlze) = ml29
Hence, the equation of motion is:

ml?6 + mglsing = 0
0+ %sine =0
The Hamiltonian

Hamiltonian in terms of Lagrangian L is given by :

H= Pala=Lat) === - (1)
a=1

This must be expressed as a function of the generalised coordinates g, and
generalised momentum p,. To accomplish this the generalised velocity g, must be
eliminated from the above equation by using the Lagrange’s equations. Then the
function can be written as

HP1, P2, Py Q1 Q2s ooos Qs £) . — — — — — 2)

This is the Hamiltonian of the system.
Hamilton’s Equation

a. When H does not contain t explicitly.
Taking the differential of equation (1) :

. . oL L .
dH = X padqq + 2 4adpe — a_qadq“ - Z@an -———3)
Using the fact that P, = ;TL' and p, = ;TL ,we get
dH = Y. padqe + X 4adPe — X Pedqe — X Do AGa = X GodDa — X Dedqq — — — (4)
Since H is expressed as a function of q,and p, ,
dH—ZaHd +ZaHd (5)
apa p(X aqa Qa
Comparing equations (4) and (5)
. OH d v OH ®)
=—— an = ————
qa apa pa aqa
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b. When H contains t explicitly.
Equations (3), (4) and (5) will be modified as follows :

0 0 .9
dH = ¥ qudpa + X Padqa — ZTqua - ZaqL d, — i dt — — = —(7)
dH = z GadPa — Z Padqa ——dt ————— (8)
aH
dH = Z ~dpa + dqa —dt————— 9
at
On comparing equations (8) and (9) :
. OH oH oL oH
9o ==— Pa=—"7"; —=—————-—(10)

ap, aq, Jat Jat

Thus, in terms of the Hamiltonian, the equations of motion of the system can be
written in the symmetrical form as shown in equations (6) or (10). These are
called Hamilton’s Equations of Motion.

Hamiltonian for Conservative Systems.
When H is independent of t explicitly, then it can be shown that it is a constant
and is equal to the total energy of the system. We have :

dH = Z Godpy — Z Padqq
oH . .
Therefore,g = Z Gola — Z PaGe =0

Hence, H = constant,say E
From Euler’s theorem on Homogeneous function

oT
Z Go ﬁ = 2Twhere T is Kinetic energy
a

JaL

. ] . . .
Since p, = Fra a—;; (assuming that potential energy does not depend upon q,)

We have ). p, q, = Z;%dq'a =2K

Hence,

H= Ypy,qes—L=2T—T+U =T+ U = E, the total energy of the system
If the system is conservative, the Hamiltonian H can be expressed as the total

energy (Kinetic +Potential) of the System.
H=T+U
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