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LAGRANGIAN AND HAMILTONIANLAGRANGIAN AND HAMILTONIANLAGRANGIAN AND HAMILTONIANLAGRANGIAN AND HAMILTONIAN    
A. Constraints and Degrees of FreedomConstraints and Degrees of FreedomConstraints and Degrees of FreedomConstraints and Degrees of Freedom . 

A constraint is a restriction on the freedom of motion of a system of particles in the form of a condition. The number of independent ways in which a mechanical system can move without violating any constraints which may be imposed on the system is called the number of degrees  of freedom of that system. In other words, number of degrees of freedom is the number of independent variables that should be specified in order to describe the positions and velocities of all the particles in the system which does not violate any condition. 
The motion of a free particle can be specified by three independent coordinates such as the Cartesian coordinates x, y and z or spherical polar coordinates r, θ, φ and so on. Hence, the free particle has three degrees of freedom. For a particle constrained to move only in a plane , like the particle executing  circular motion or a projectile, two independent coordinates x, y or r, θ is sufficient to describe the motion. Hence, the particle has two degrees of freedom. A particle confined to move along a curved path has only one degree of freedom. 
When the motion of a system is restricted in some manner, constraints are said to have been introduced. A bead sliding down a wire or a disc rolling down an inclined plane are some examples of constrained motion. 
Every condition of constraint reduces the number of degree of freedom by one. Thus, a system having N particles moving independent of one another has 3N degrees of freedom and if their motion is restricted by k conditions of constraints, the true number of degrees of freedom will be only (3N – k ). 
When the conditions of constraints can be expressed as  equations connecting the coordinates of the particles, the constraints are called holonomicholonomicholonomicholonomic. 
The general constraining equation is of the form 

12 ( 34, 35, 36, … , 38, 9) =  0 
In the case of a simple pendulum moving in the X-Y plane, the two equations of constraints are : 
                                               @5 + B5 = C5 = const 

D = 0 
In the case of the simple pendulum shown,   
only one variable q is sufficient to locate the  
position of the oscillating bob P. y 
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When the conditions of constraints cannot be expressed as an equation but may be expressed as an inequality, then the constraints are called nonnonnonnon----holonomicholonomicholonomicholonomic. 
The equation of constraint in the case of a particle moving on or outside the surface of a sphere of radius a is   @5 + B5 + D5 ≥  G5 if the origin of the coordinate system coincides with the centre of the sphere. This inequality is a non-holonomic constraint. 
 

B.B.B.B. Scleronomous and Rheonomous constraints.Scleronomous and Rheonomous constraints.Scleronomous and Rheonomous constraints.Scleronomous and Rheonomous constraints.    
Scleronomous constraints are those which are independent of time. Rheonomous constraints are those which are explicitly dependent on time. 
The oscillations of the bob of a simple pendulum whose length is constant is scleronomous whereas whose length varies with time, the constraint is rheonomous. 
 

C. Generalised coordinatesGeneralised coordinatesGeneralised coordinatesGeneralised coordinates. 
Consider a system of N particles where the motion is restricted by  k conditions of constraints expressed as k equations connecting the 3N coordinates. The position coordinates of particles expressed as (x1, y1,z1), (x2, y2,z2),.... can now be relabelled as (x1, x2,x3), (x4, x5,x6),.... Thus, the coordinates of the N particles will now run as (x1, x2x3, ....,x3N) 
Instead of (x1, y1,z1),... (xN, yN,zN). The dynamics of the system can be understood by solving the 3N equations 

OP  Q5@PQ95 = RP( PS4,5,…T) 
In this case,  m1 = m2 = m3 = mass of first particle 
   m4 = m5 = m6  = mass of second particle 
and so on. 
However, these 3N equations are not independent since the conditions of constraints expressible as k equations connecting the coordinates xi’s {W. X. , 1P(@4, @5, @6, … , @6T) = GP } must also be taken into account in obtaining consistent solutions. 
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It is possible that a new set of coordinates q1,q2,q3, ... , qn can be chosen properly and expressed in terms of the original set of coordinates (xi) such that their number n is equal to the number of degrees of freedom {n=3N-k}. 
The equations of motion described in terms of new coordinates (q’s) will be independent since the choice of q’s is such that they are no longer connected to each other by an equation of constraint. The new coordinates q’s are known as generalised coordinates. The generalised coordinates need not have the dimensions of length. 
Consider the oscillations of the bob of a simple pendulum of length l oscillating in the X-Y plane to be described by the coordinates x and y with the origin O coinciding with the point of suspension. The coordinates x and y are not independent of one another but are connected by the equation of constraint as  @5 + B5 = C5 = const 
The bob though moves in a plane has only one degree of freedom.  
Its motion can be described in terms of x and y by  
the relation Z = tan[4 \]. The angle ^ serves as the generalized 
 coordinate in this case. 
Generalised Force.Generalised Force.Generalised Force.Generalised Force.    
The generalised coordinates (q ‘s) may undergo displacement from the initial values (q1,q2,q3, ... , qn  ) to their neighboring values (q1+`a4, q2 + `a5, q3+ `a6,, ... , qn+`a8) over an interval of time `9. The corresponding changes in the original coordinates can be expressed as  

`@4 = b@4ba4 . `a4 + b@4ba5 . `a5 + … . + b@4ba8 . `a8 = c  8
dS4

b@4bad . `ad  
`@5 = b@5ba4 . `a4 + b@5ba5 . `a5 +  … . + b@5ba8 . `a8 = c  8

dS4
b@5bad . `ad  

   . 
   . 
   . 

`@6T = b@6Tba4 . `a4 + b@6Tba5 . `a5 +  … . + b@6Tba8 . `a8 = c  8
dS4

b@6Tbad . `ad  
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The above expressions may be written in a compact form as follows : 
`@P = b@Pba4 . `a4 + b@Pba5 . `a5 +  … . + b@Pba8 . `a8  = c  8

dS4
b@Pbad . `ad  (W = 1,2,3,   … , 3e)     

For a particle undergoing a displacement   `3 under the action of force F , the work done is given by  
`f = R. `3 = R\`@ + R]`B + Rg`D 

This work in the new notation can be expressed as 
`f = c RP ∙6

PS4 `@P 
GiQ 1j3 G kBk9XO ljikWWk9Wim j1 e nG39WlCXk , we can write 

`f = c RP ∙6T
PS4 `@P 

Substituting for `@P  we get 
`f = c RP c b@Pbad

8
dS4

6T
PS4 `ad 

Hence,  
`f = c od ∙d `ad  

where od = ∑ RP q\rqst = uXiX3GCWkXQ 1j3lXP   
D’Alembert’s Principle.D’Alembert’s Principle.D’Alembert’s Principle.D’Alembert’s Principle.    
Consider a system described by n generalised coordinates (q1,q2,q3, ... , qn)  undergoing a displacement such that it does not take any time and that it is consistent with the constraints of the system. Such displacements are called VIRTUAL because they do not represent actual displacements of the system. Since there is no actual motion of the system, the work done by the forces of constraints in such a virtual displacement is zero. 
If a particle is constrained to move on the surface of a smooth sphere, then the force of constraint is equivalent to the reaction of the surface. In this case, the virtual displacement is taken at right angles to the direction of the force so that work done by the force during the virtual displacement is zero. 
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If `3P  is the virtual displacement of the ith particle on which a resultant force Fi acts and the system is in equilibrium, then the virtual work done RP ∙ `3P = DX3j  
The resultant force on the ith particle is made up of two forces 

RPx −  9ℎX GnnCWXQ 1j3lX 
                                                     1P −  9ℎX 1j3lX j1 ljik93GWi9 
Hence, we can write RP = RPx + 1P   
Therefore, we get ∑ RPx ∙ `3P + ∑ 1P ∙ `3P = DX3j  
Let us assume that virtual work done by the forces of constraints is zero 

c 1P ∙ `3P = DX3j 
The virtual displacements are such that the total work done by the forces of constraints is zero. The above equation will not hold good if the frictional forces are present. This is because, the frictional forces act in a direction opposite to that of the displacement. 
 
Principle of Virtual Work states: 
“ Virtual Work done by the applied forces acting on a system in Virtual Work done by the applied forces acting on a system in Virtual Work done by the applied forces acting on a system in Virtual Work done by the applied forces acting on a system in equilibrium is zero, equilibrium is zero, equilibrium is zero, equilibrium is zero, provided no frictional forces are present”provided no frictional forces are present”provided no frictional forces are present”provided no frictional forces are present”    

c RPx ∙ `3P = DX3jP   
Most of the mechanical systems are not in static equilibrium but are in dynamic equilibrium. Hence, the principle must be modified to include dynamic systems also. 
We can write RP = n}~  and hence RP − n}~   = �X3j . The system appears to be in dynamic equilibrium under the action of the applied force RP  and an equal and opposite ‘effective force’  n}~  . This effective force is called ‘Kinetic Reaction’. 
We can now generalise the principle of vitual work and can express: 

c��� − ��~ � ∙ ��� = �����     
�ℎX G�j�X X@n3XkkWji Wk lGCCXQ ���������������������. 
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�i 9X3Ok j1 mXXi3GCWkXQ ljj3QWiG9Xk,     ∑ �� ∙ ��� = �����    
 
POTENTIAL and KINETIC ENERGIES. 
The generalised coordinates q’s need not have the dimensions of length and the generalised force Q� need not have the dimensions of force. But the product od`ad  must necessarily have the dimensions of work. The rectangular components of the force acting on a particle in a conservative force field is given by F  = − ¡ q¢q\r£ where V is the potential energy function. The expression for generalised force in a conservative force field can be expressed as 
                    od = ∑ RP q\rqstP = − ∑ q¢q\r ∙ q\rqst       -----(1) 
Since V is a function of x’s, we have  

                    q¢qst = q¢q\¤ ∙ q\¤qst +  q¢q\¥ ∙ q\¥qst + q¢q\¦ ∙ q\¦qst + ⋯ + q¢q\¦¨ ∙ q\¦¨qst = ∑ q¢q\r ∙ q\rqst  -----(2) 
Comparing equations (1) and (2), the generalised force is given in terms of potential by 
                                              od = − q¢qst    
The kinetic energy of the system of N particles is given by : 
                                     � =  c    45 OP@}5 ~6T

PS4     ------- (3) 
 

Generalised coordinates are expressed in terms of the coordinates x’s and hence x’s can be expressed in terms of q’s as : 
@P = 1P(a4, a5, a6, … , a8) 

Therefore,  
                   ©\r©ª   = =

•
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= ∑ «¬«®¯°±S4 . q±~     -------- (4) 
The quantities a~ ’s are called generalised velocities. Taking partial derivative of @~   ²39 a³~  we get  «¬~́«®~̄ = «¬«®¯   . This  result may be remembered by looking at it as the cancellation of dots. 
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Multiplying by xµ~  , we get   @} ∙~ q\¶~qst~ = xµ ∙~ «¬«®¯.  
Differentiating wrt ‘t’ :  ··¸ ¹xµ ∙~ «¬~́«®~̄ º = ··¸ ¹@} ∙~ q\rqstº  
                                                                    = @} » ∙ q\rqst + @} ∙~ ©©ª ¹q\rqstº 
                                                                    = @} » ∙ q\rqst + @} ∙~ qqst ¡©\r©ª £ 
                                                                     = @} » ∙ q\rqst + @} ∙~ q\¶~qst    ---------- (5) 
      Also,           LHS = ©©ª ¹xµ ∙~ «¬~́«®~̄ º = ©©ª ¹45 «¬~́ ¥

«®~̄ º = ©©ª ¼ ««®~̄ ¡\¶~ ¥
5 £½ 

Equation (5) becomes        ©©ª ¼ ««®~̄ ¡\¶~ ¥
5 £½ = @}» «¬«®¯ + ««®¯ ¡\¶~ ¥

5 £ ---------(6) 
Differential Equation 4 wrt   a¾  

b@}~ba¾ = ∑ dS48¤ b5@Wba¾bad . ad~  
But             ©©ª ¡q\rqs¿£ = ∑ dS48¤ q¥\rqs¿  ad  ~  
Comparing the above two equations : 
                          ©©ª ¡ «¬«®À£ = «¬~́«®À = ««®¯ ¡©\©ª£ ----------  (7) 
This result shows that d and b can be interchanged. 
Lagrange’s equations of Lagrange’s equations of Lagrange’s equations of Lagrange’s equations of motion.motion.motion.motion.    
Multiplying equation (6) above by mi, the mass of ith coordinate, we get : 
                       © ©ª ¼ ««®~̄ ¡OP  \¶~ ¥

5 £½ = OP@}» «¬«®¯ + ««®¯ ¡OP \¶~ ¥
5 £  -------  (8) 

By Newton’s law , RP = OP@}»    
Substituting in the above equation and summing over all values of i, we get  

QQ9 Ã ∂∂q±~ Åc OP @}~ 5
2

6T
PS4 ÆÇ = c RP ∂x ∂q±

6T
PS4 + ∂∂q± Åc OP

6T
PS4  @}~ 5

2 Æ 
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QQ9 ¼ b�bad~ ½ = od + b�bad  
Hence,  ÈÈ� ¼ ÉÊÉ�Ë~ ½ − ÉÊÉ�Ë = �Ë    
These are called Lagrange’s Equations of Motion. 
qÌqst~ = nÍ  is called generalised momentum or conjugate momentum. Potential 
energy is a function of only q’s. 
Let L = T – V  
Therefore, qÎqst~ = qqst~ (� − Ï) = qÐqst~  
Hence, ©©ª ¹ qÎqst~ º − qÌqst = od = − q¢qst 

⟹ QQ9 ¼ bÒbad~ ½ − bbad (� − Ï) = 0 
ÈÈ� ¼ ÉÓÉ�Ë~ ½ − ÉÓÉ�Ë = Ô    

This is called Lagrangian function of the system or simply Lagrangian.  
Lagrangian for Simple Pendulum.Lagrangian for Simple Pendulum.Lagrangian for Simple Pendulum.Lagrangian for Simple Pendulum.    
Let ^ be the angle made by the string with the vertical at an instant of time. The KE of the bob is given by  
� = 45 O�5 = 45 OC ~̂ 5 where m = mass of the bob  
PE of the bob about the mean position A : Ï = Om(ÕÖ − Õ×) = OmC(1 − ljk^) 
Lagrangian, L = T – V =45 OC ~̂ 5 − OmC(1 − ljk^) 
Lagrangian equation of motion : 
©©ª ¡qÎqØ~ £ − qÎqØ = 0 as ^ is the generalised coordinate. 
qÎqØ~ = OC5 ~̂  GiQ qÎqØ  = −OmCkWi^               C            B                            A   
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QQ9 ¹bÒb ~̂º = QQ9 �OC5 ~̂ � = OC5 »̂  
Hence, the equation of motion is : 

OC5 »̂ + OmCkWi^ = 0 
Ù» + Ú� ���Ù = Ô    

The HamiltonianThe HamiltonianThe HamiltonianThe Hamiltonian    
Hamiltonian in terms of Lagrangian L is given by : 

Û = c nÍa~Í − Ò(aÍ, 9)8
ÍS4 − − − − − −(1) 

This must be expressed as a function of the generalised coordinates aÍ and generalised momentum nÍ. To accomplish this the generalised velocity aÍ~  must be eliminated from the above equation by using the Lagrange’s equations. Then the function can be written as  
Û(n4, n5, … , n8, a4, a5, … , a8, 9). − − − − −(2) 

  
This is the Hamiltonian of the system. 
Hamilton’s Equation 
a.a.a.a. When H does not contain When H does not contain When H does not contain When H does not contain tttt    explicitly.explicitly.explicitly.explicitly.    Taking the differential of equation (1) :                      QÛ = ∑ nÍQa~Í + ∑ a~ÍQnÍ − qÎqsÜdaÍ − ∑ qÎqsÜ~ QaÍ~ − − − −(3) 
Using the fact that ÝÍ = qÎqsÜ~  GiQ nÍ~ = qÎqsÜ  , ²X mX9 
QÛ = ∑ nÍQa~Í + ∑ a~ÍQnÍ − ∑ nÍ~ daÍ − ∑ nÍ QaÍ~ = ∑ aÍ~ QnÍ − ∑ nÍ~ QaÍ − − − (4) 
Since H is expressed as a function of aÍand nÍ , 

QÛ = c bÛbnÍ QnÍ + c bÛbaÍ QaÍ − − − −(5) 
Comparing equations (4) and (5)  

�Þ~ = ÉßÉ�Þ     à�È   �Þ~ = − ÉßÉ�Þ − − − − − (á)    
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b.b.b.b. When H contains When H contains When H contains When H contains t t t t explicitly.explicitly.explicitly.explicitly.    Equations (3), (4) and (5) will be modified as follows : QÛ = ∑ aÍ~ QnÍ + ∑ nÍQa~Í − ∑ qÎqsÜdaÍ − ∑ qÎqsÜ~ QaÍ~ − qÎqª Q9 − − − −(7) 
 QÛ = c aÍ~ QnÍ − c nÍ~ QaÍ − bÒb9 Q9 − − − − − (8) 
QÛ = c bÛbnÍ QnÍ + bÛbaÍ QaÍ + bÛb9 Q9 − − − − − (9) 

On comparing equations (8) and (9) : 
�Þ~ = ÉßÉ�Þ ;   �Þ~ = − ÉßÉ�Þ  ;      ÉÓÉ� = − ÉßÉ� − − − −(äÔ)    

 Thus, in terms of the Hamiltonian, the equations of motion of the system can be written in the symmetrical form as shown in equations (6) or (10). These are called Hamilton’s Equations of MotionHamilton’s Equations of MotionHamilton’s Equations of MotionHamilton’s Equations of Motion.   Hamiltonian for Conservative Systems.Hamiltonian for Conservative Systems.Hamiltonian for Conservative Systems.Hamiltonian for Conservative Systems.    When H is independent of t explicitly, then it can be shown that it is a constant and is equal to the total energy of the system. We have :  QÛ = c aÍ~ QnÍ − c nÍ~ QaÍ  
�ℎX3X1j3X, bÛb9 = c aÍ~ nÍ~ − c nÍ~ aÍ~  = 0 ÛXilX, Û = ljik9Gi9, kGB å From Euler’s theorem on Homogeneous function 
c aÍ~ b�baÍ~ = 2�²ℎX3X � Wk æWiX9Wl XiX3mB 

Since nÍ = qÎqsÜ~ = qÐqsÜ~  (assuming that potential energy does not depend upon aÍ)~   We have ∑ nÍ aÍ~ = ∑ qÐqsÜ~ QaÍ~ = 2æ  Hence, Û =  ∑ nÍ aÍ~ − Ò = 2� − � + ç = � + ç = å, 9ℎX 9j9GC XiX3mB j1 9ℎX kBk9XO  If the system is conservative, the Hamiltonian H can be expressed as the total energy (Kinetic +Potential) of the System. ß = Ê + è     


