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Chapter 1

Introduction

1.1 Principles of Fluid Mechanics

The liquids and gases are the states of a matter that come under the same category as

”fluids”. A Fluid is a substance that deforms continuously when subjected to stresses how-

ever small it may be. Such continuous deformation constitutes a flow. The theory of fluid

flow ( incompressible or compressible fluid ) is based on the Newtonian mechanics. The

concept of continuum is a kind of idealization of continuous description of matter where

the properties of the matter such as density, viscosity, thermal conductivity temperature etc

are considered as continuous functions of space variables and time.

All mathematical models of the real world problems occurring in fluid mechanics obey

the following fundamental conservation laws

1. Conservation of Mass

2. Conservation of Momentum

1



Introduction 2

3. Conservation of Energy

It is useful to classify the type of fluid flow into the following

Uniform flow:

The fluid flow is said to be uniform If the flow velocity is the same both in magnitude

and direction at every point in the fluid.

Non-uniform flow:

The fluid flow is said to be non uniform if the velocity is not the same at every point at

a given instant.

Steady flow:

A steady flow is a fluid flow in which the conditions (velocity, pressure and cross-

section) may differ from point to point but do not change with time.

Unsteady flow:

A unsteady flow is a fluid flow in which the conditions change with time at any point in

the fluid.

Incompressible flow

Incompressible flow refers to a flow in which the density is constant within a fluid par-

cel - an infinitesimal volume that moves with the velocity of the fluid. Incompressible flow

implies that the density remains constant within a parcel of fluid which moves with the

fluid velocity.

Compressible flow

Compressible flow is the area of fluid mechanics that deals with fluids in which the fluid

density varies significantly in response to a change in pressure. A change in density brings
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an additional variable into the analysis and this introduces another variable (temperature),

and so a fourth equation (such as the ideal gas equation) is required to relate the tempera-

ture to the other thermodynamic properties in order to fully describe the flow.

Thus in case of compressible flow fluid models can be solved by considering not only

the equations from conservation of mass and momentum but also the principle of conserva-

tion of energy. The most distinct differences between the compressible and incompressible

flow models are that the compressible flow model allows for the existence of shock waves

and choked flow.

Compressible and incompressible fluid flow problems modeling involves nonlinear dif-

ferential equations. Due to non availability of standard methods to find analytical solutions,

many problems are solved using approximate as well as numerical methods.

1.2 Boundary Layer Theory

The boundary layer theory [1] which was first developed by L. Prandtl in 1904 gave a

convincing explanation for motion of fluid around objects and this led to major advances

in fluid dynamics. The detailed analysis of the flow within the boundary layer region is

very important for many engineering problems and aerodynamics. If a fluid flows in the

presence of an obstacle, then the obstacle will experience two types of forces,

1. drag force in the direction of motion of the fluid,

2. lift force in a direction normal to the flow direction.
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These two forces are produced by tangential and normal stresses. The shearing stress i.e.,

the drag due to tangential stress is called friction or skin friction or viscous drag. The drag

due to normal stress is called pressure drag.Thus flows constrained by solid surfaces can

typically be divided into two regions as below,

1. Boundary Layer Region

Flows are near a bounding surface with significant velocity gradients normal to the

solid body and shear stresses in this region are predominant.

2. Potential Flow Region

Flows far from bounding surface with negligible velocity gradients, negligible shear

stresses where inertia effects are important.

Description of Boundary Layer

Boundary layers are the thin fluid layers adjacent to the surface of a body in which

strong viscous effects exist. Consider the nature of flow field that would exist around an

arbitrary body at a Reynolds number that is not small or of order unity. The nature of such

a flow field is known from information gathered from large number of experiments.The

streamline originates at the front stagnation point and moves downstream near the top and

bottom surfaces of the body. In the potential flow region, relative to the body, the velocity

gradients are not large, and so viscous effects are negligible. Then, if compressible effects

may be ignored, the fluid may be considered ideal.
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Boundary layers may be either laminar, or turbulent depending on the value of the

Reynolds number. For lower Reynolds numbers, the boundary layer is laminar and the

stream wise velocity changes uniformly as one move away from the wall. For higher

Reynolds numbers, the boundary layer is turbulent and the stream wise velocity is char-

acterized by unsteady swirling flows inside the boundary layer.

The external flow reacts to the edge of the boundary layer just as it would to the physical

surface of an object. So the boundary layer gives any object an ”effective” shape which is

usually slightly different from the physical shape. Since the flow in the boundary has very

low energy and is more easily driven by changes in pressure, the boundary layer may lift off

or ”separate” from the body and create an effective shape much different from the physical

shape.

Boundary Layer Thickness

The thickness of the velocity boundary layer is normally defined as the distance from

the solid body at which the viscous flow velocity is 99% of the free stream velocity. The

boundary layer (velocity layer) thickness, δ, is the distance across a boundary layer from the

wall to a point where the flow velocity u has essentially reached the ’free stream’ velocity,

U. The distance is measured along normal to the wall, and the point where the flow velocity

is essentially that of the free stream.

Flow problems in Boundary layer theory

Laminar boundary layers are classified according to their structure and the circum-

stances under which they are created.



Introduction 6

1. Stokes boundary layer is a layer in which the thin shear layer develops on an oscil-

lating body

2. Blasius boundary layer refers to the well-known similarity solution near an attached

flat plate held in an oncoming unidirectional flow.

Compressible Boundary layers

The boundary layer theory which was first developed for laminar incompressible fluids

was later extended to compressible flows also. The physical ideas underlying the bound-

ary - layer concept are translatable to compressible flows. In this case, the thermal effects

during the flow and heat transfer in the boundary layer exist due to the variation of density

and viscosity with temperature. Thus both the physics and mathematics concepts become

complicated. Consequently, flow problems of laminar compressible boundary layers have

not been investigated to the same extent as those for incompressible flows.

1.3 Mathematical Methods

Non-linear Problems and Perturbation

Many of the problems in modeling that arise in technological and industrial situations are

highly non-linear. As a result, it is often difficult to obtain analytical solutions to these

problems. During the last century, perturbation methods have often been used to obtain

solutions to these problems. These methods, however, are typically dependent on the pres-

ence of a small or large parameter; consequently, perturbation methods often have some
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restriction to provide accurate results for moderate to large (or small) values of the parame-

ters.Asymptotic analysis provide solutions to problems for all parameters of interest. Liao

[7] gives an example that effectively illustrates the limitations of traditional perturbation

methods: the problem of a body of mass m falling freely through space with a velocity that

varies with time under the influence of gravity g and air resistance. He then goes on to give

an alternative technique known as the homotopy analysis method (HAM), which, for this

particular problem, does not suffer from the said limitation.

Similarity solution

In this method, the number of independent variables is reduced by using appropriate com-

bination of original independent variables as new independent variables called similarity

variables. This method is called the similarity method which is used for obtaining the exact

solutions of Partial Differential Equations.

Using the concept of dimensional analysis and scaling laws, by looking at the physical

effects present in a system, we find that the solution of the system is not fixed on a natural

length scale (time scale), but depends on space (time).

It is then necessary to construct a length scale (time scale) using time (space) and the

other dimensional quantities present such as viscosity These constructs are not ’guessed’

but are derived immediately from the scaling of the governing equations.

Numerical methods are generally used to solve systems of nonlinear ordinary differ-

ential equations which are obtained as a reduction of most boundary-layer models. It is

however interesting to find approximate analytical solutions to boundary layer problems.
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Analytical methods have significant advantages over numerical methods in providing rela-

tion between derived quantities. These solutions are analytic, verifiable and rapidly con-

vergent approximation which have wider range of applications.

An analytical solution is exact and it is a formula that can be used for any situation

and can be used to account for the errors in measurements. The formula will show the

intrinsic relationship between the variables and therefore can be manipulated into different

forms.There are large number of approximate solution procedures for the solution of both

linear and nonlinear equations. These include, integral transforms, perturbation methods,

Series analysis etc. A numerical solution is almost always approximate and is unique to

the given situation. In general it is a rough ”estimate” of the right answer based on math-

ematical techniques and may therefore have a higher degree of uncertainty. For linear and

some other system, Lax equivalence theorem (for finite difference scheme) shows some

numerical schemes to be exact.

1.4 Homotopy Analysis Method

In 1992 Shijun Liao, in his Ph.D thesis, suggested a powerful method called Ho-

motopy analysis method to solve almost all nonlinear ordinary differential equations ana-

lytically. The basic concept behind this method is the concept of homotopy from topology.

This method generates a convergent series by utilizing homotopy-Maclaurin series which

is almost analogous to Adomian polynomials.



Introduction 9

The Homotopy analysis method (HAM) based on series approximation was first devel-

oped by Liao [2,3] for strongly nonlinear problems. HAM uses base functions to obtain

series solutions to boundary-layer equations. Liao [4] has given comparison between HAM

and Homotopy perturbation method and showed that HAM is general method, Homotopy

perturbation method is only a special case of the HAM. Liao et al. [5] have studied the tem-

perature distributions for a laminar viscous flow over a semi-infinite plate by HAM. Liao

[6] gave the relationship between the HAM and Euler transform and showed that Euler

transform is equivalent to HAM but HAM is more powerful then Euler transform. HAM

has proven to be very efficient in solving the nonlinear boundary value problems with infi-

nite domain.

The Homotopy analysis method (HAM) that has been advanced by Liao [2,3,4,5,6,7].

The basic idea of the Homotopy analysis method (HAM) is to produce a succession of

approximate solutions that tend to the exact solution of the problem. The presence of aux-

iliary parameters and functions in the approximate solution results in the production of a

family of approximate solutions rather than the single solution produced by traditional per-

turbation methods. By varying these auxiliary parameters and functions, it is possible to

adjust the region and rate of convergence of the series solution .

1.5 Need for the study

Boundary Layer Theory has a lot of practical applications such as extrusion of plastic

sheets, rolling and manufacturing of plastic films, cooling of metallic plates and boundary
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layer flow over heat treated materials between feed roll, a windup roll and in Aerodynamics.

All Boundary value problems are represented by non linear partial differential equations.

These problems can be reduced to non linear ordinary differential equations.

Homotopy analysis method is a method used to find analytical solution which needs

computers. High end computers are therefore helpful to find analytical solutions of high

accuracy.

1.6 Scope of the Research Work presented in this Project

Almost all real world problems are non-linear and many can’t be solved with analytic

techniques. In these cases, numerical methods (like finite element analysis,finite differ-

ence scheme, Runge kutta merson methods, etc ) are the only choice and can be solved

effectively by means of sophisticated computers with good accuracy. In spite of that, the

searches for exact analytic solutions of nonlinear partial differential equations continue un-

ceasingly. This is because it is difficult to get general idea of the problem purely from

numbers; in any case they must be compared with some known exact solutions of specific

cases . Any phenomenon can be completely understood by analysis of physical system

which enriches the mathematics involved in it.

The main objective is to get analytic solutions for nonlinear differential equations aris-

ing in fluid dynamics, in particular boundary layer region and validate the method used to

obtain analytic solution by comparing it to their numerical solutions.
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Homotopy Analysis Method

2.1 Details of Homotopy Analysis Method

Consider a nonlinear differential equation

N [u(t)] = 0 (2.1.1)

where N is a nonlinear operator, t denotes the time, and u(t) is an unknown variable. Let

u0(t) denote an initial approximation of u(t) and L denote an auxiliary linear operator.

We construct the Homotopy as

H[φ(t; q); q] = (1− q)L[φ(t; q)− u0(t)] + qN [φ(t; q)], (2.1.2)

Where q ε [0, 1] is an embedding parameter and φ(t; q) is a function of t and q. When q = 0

and q = 1, equation (2.1.2) becomes

H[φ(t; q); q]|q=0 = L[φ(t; 0)− u0(t)] (2.1.3)

11
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H[φ(t; q); q]|q=1 = N [φ(t; 1)] (2.1.4)

respectively.

It is clear that φ(t; 0) = u0(t)is the solution of the equation

H[φ(t; q); q]|q=0 = 0

and φ(t; 1) = u(t) is therefore obviously the solution of the equation

H[φ(t; q); q]|q=1 = 0

As the embedding parameter q increases from 0 to 1, the solution φ(t; q) varies from the

initial approximation u0(t) to the solution u(t) of equation N[u(t)] = 0.

In topology, such a kind of continuous variation or deformation is called as homotopy

which is used in Homotopy Analysis Method .

By using Maclaurin series for φ(t; q) , it can be expressed as

φ(t, q) = φ(t, 0) +
+∞∑
k=1

qk

k!

∂kφ(t, q)

∂qk

∣∣∣∣
q= 0

. (2.1.5)

We take φ(t, 0) = φ0(t) = f0(t) and Define

fk(t) =
1

k!

∂kφ(t, q)

∂qk

∣∣∣∣ q= 0(k > 0) (2.1.6)

Equations (2.1.5) and (2.1.6) become

φ(t, q) = f0(t) +
+∞∑
k=1

fk(t)q
k. (2.1.7)
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Now the solution is a series fk(t). In order to calculate fk(t), we set homotopy

equal to zero in equation (2.1.2) and differentiating k times about the embedding parameter

q and applying Leibnitz theorem, setting q = 0 and dividing by k! , we get

L[φk − χkφk−1] = hRk(η), (2.1.8)

where χk =

{
0 when k ≤ 1

1 when k > 1

Rk(t) = hH(t)
1

(k − 1)!

∂k−1N [φ(t; q)]

∂qk−1

∣∣∣∣ q=0. (2.1.9)

Obviously, the convergence region of the above series depends upon the auxiliary linear

operators L, the initial guess u0(t) and the non-zero auxiliary parameter h. If all of them

are selected so that (2.1.7) converge at p = 1, and thus (2.1.7) can be written as

f(t) = f0(t) +
+∞∑
k=1

fk(t), (2.1.10)

where fk are unknowns to be obtained and this solution will be valid whenever the series

is convergent.

It is observed that the convergence region by HAM is larger than the other methods. The

region of convergence and the rate of convergence can be adjusted by varying L, u0(t) and

h.

2.2 Guidelines for Developing Solutions

The Homotopy Analysis Method gives us a great deal of freedom for the selection

of an appropriate linear operator, auxiliary function, and initial approximations to develop
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a convergent solution to given nonlinear differential equation.

A set of base functions {en(t)|n = 0, 1, 2,...} are chosen first such that they satisfy

the initial or boundary conditions of a problem and by considering the physical interpreta-

tion and expected asymptotic behaviour of the solution.

By the rule of solution expression, we can write the solution as

f(t) =
∞∑
0

cnen(t),

where cn are constants. This rule will also guide us to choose linear operator L and auxil-

iary function H(t).

For the sake of completeness of the solution the rule of coefficient ergodicity also should

be applied.

The third rule, the rule of solution existence requires the selection of the linear operator,

auxiliary function and initial approximation gives analytical solution to each one of the

deformation equations.

2.3 Illustration of Homotopy Analysis Method

Introduction

When a sheet of polymer is extruded continuously from a die, it entrains the ambient

fluid and a boundary layer develops. Such a boundary layer is markedly different from that
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in the Blasius flow past a flat plate in that the boundary layer grows in the direction of the

motion of the sheet, starting at the die.

2.4 Governing equations

Consider the steady two-dimensional incompressible flow of an electrically conduct-

ing viscous fluid past a nonlinearly semi-infinite stretching sheet. The governing boundary

layer equations are

∂u

∂x
+
∂v

∂y
= 0, (2.4.1)

u
∂u

∂x
+ v

∂u

∂y
= vm

∂2u

∂y2
(2.4.2)

where x and y are distances along and perpendicular to the sheet, respectively, u and

v are components of the velocity along x and y directions respectively, vm is kinematic

viscosity. The corresponding boundary conditions,

u(x, 0) = ax + cx2, v(x, 0) = 0 (2.4.3)

u→ 0 as y →∞ (2.4.4)
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where a and c are constants .

We introduce the similarity transformations

η =

√
a

νm
y, u = ax f ′(η) + cx2g′(η), (2.4.5)

v = −
√
aνmf(η)-

2cx√
a /νm

g(η) (2.4.6)

to equations (2.4.1)and (2.4.2) as follows

∂η

∂y
=

√
a

νm
(2.4.7)

∂u

∂x
= a f ′(η) + 2cxg′(η),

∂v

∂y
= −
√
aνmf

′(η)
∂η

∂y
-

2cx√
a /νm

g′(η)
∂η

∂y
,

∂v

∂y
= −
√
aνmf

′(η)
√

a

νm
-

2cx√
a /νm

g′(η)

√
a

νm
,

∂v

∂y
= −af ′(η)-2cxg′(η) ,

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂y
= ax f ′′(η)

∂η

∂y
+ cx2g′′(η)

∂η

∂y
,

∂u

∂y
= ax f ′′(η)

√
a

νm
+ cx2g′′(η)

√
a

νm
,

∂2u

∂y2
= ax f ′′′(η)

(√
a

νm

)
2 + cx2g′′′(η)

(√
a

νm

)
2 ,

∂2u

∂y2
=
a2x

νm
f ′′′(η) +

acx2

νm
g′′′(η),

u
∂u

∂x
+ v

∂u

∂y
= vm

∂2u

∂y2
,

[
ax f ′(η) + cx2g′(η)

]
[a f ′(η) + 2cxg′(η)] +[

−
√
aνmf(η)-

2cx√
a /νm

g(η)

][
ax f ′′(η)

√
a

νm
+ cx2g′′(η)

√
a

νm

]
,
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= νm

[
a2x

νm
f ′′′(η) +

acx2

νm
g′′′(η)

]
a2x

(
(f ′)

2 − ff ′′ − f ′′′
)

+ acx2 (3f ′g′ − 2f ′′g − fg′′ − g′′′) + 2c2x3
(
(g′)

2 − gg′′
)
= 0, (2.4.8)

This reduces Equations. (2.4.1) - (2.4.4) to a system of dimensionless nonlinear ordinary

differential equations

f ′′′ + ff ′′ − (f ′)
2
= 0, (2.4.9)

g′′′ + fg′′ + 2f ′′g − 3f ′g′ = 0, (2.4.10)

subject to boundary conditions,

f(0) = 0, f ′(0) = 1, f ′(+∞) = 0, (2.4.11)

g(0) = 0, g′(0) = 1, g′(+∞) = 0. (2.4.12)

where f and g are functions related to the velocity field, N is magnetic parameter. The

primes denote differentiation with respect to η.

2.5 Method of Solution

The solution of equation (2.4.5) under (2.4.7) is considered for explaining homotopy

analysis method.

We first select the auxiliary linear operator

L =
∂3

∂η3
+

∂2

∂η2
(2.5.1)
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Then, we construct a family of partial differential equations

(1-p)L[F(η,p)-f0(η))]=hp

{
∂3F

∂η3
+ F

∂2F

∂η2
−
(
∂F

∂η

)2
}

(2.5.2)

with boundary conditions

F(0,p)=0,Fη(0,p)=1,Fη(+∞,p)=0 (2.5.3)

where Fη denotes the first-order derivative of F (η, p) with respect to η,

p ∈ [0,1] is the embedding parameter,

h 6= 0 is an non zero auxiliary parameter,

f0(η) is the initial guess approximations off(η),

We choose f0(η) as follows in accordance with boundary conditions (2.5.3)

f0(η)=1-e-η (2.5.4)

When p = 0, we have the solution

F (η, 0)=f0(η), (2.5.5)

and

When p = 1, equations (2.5.2) - (2.5.3) is the same as (2.4.5) - (2.4.7) so that

F (η, 1)=f(η), (2.5.6)

Thus as p increases from 0 to 1, the solution varies from the initial guess f0(η) to the

solution f(η).

The initial guess approximation f0(η) , the auxiliary linear operator L and the auxiliary
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parameters h are assumed to be selected such that equations (2.5.2) - (2.5.3) have solutions

at each point p ∈ [0,1] and also F (η, p) can be expressed in Maclaurin series

F (η, p) = F (η, 0) +
+∞∑
k=1

pk

k!

∂kF (η, p)

∂pk

∣∣∣∣ p= 0 (2.5.7)

Defining

F (η, 0)=f0(η) = φ0(η), (2.5.8)

φk(η) =
1

k!

∂kF (η, p)

∂pk

∣∣∣∣ p= 0(k > 0), (2.5.9)

We have due to (2.5.7) - (2.5.9) that

F (η, p) = φ0(η) +
+∞∑
k=1

φk(η)p
k, (2.5.10)

Obviously, the convergence region of the above series depends upon the auxiliary linear

operator L and the non-zero auxiliary parameter h . If all of them are selected so that

(2.5.10) converge at p = 1, Substituting (2.5.6) in (2.5.10), We obtain

f(η) = φ0(η) +
+∞∑
m=1

φm(η), (2.5.11)

Here φm(η) are unknowns to be solved

Differentiating m times the two sides of equations (2.5.2) that is

(1-p)L[F(η,p)-f0(η))]=hp

{
∂3F

∂η3
+ F

∂2F

∂η2
−
(
∂F

∂η

)2
}
, (2.5.12)

about the embedding parameter p ,we have

dm

dpm
((1-p)L[F(η,p)-f0(η))])=h

dm

dpm

(
p

{
∂3F

∂η3
+ F

∂2F

∂η2
−
(
∂F

∂η

)2
})

,
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By Using Leibnitz theorem,

dm

dxm
(uv)=umv +m C1um-1v1 +

m C2um-2v2 + · · ·+m Crum-rvr + · · ·+ uvm,

dm

dxm
(uv)=

m∑
k=0

(mCkum-kvk),

Setting p = 0, dividing by m! and using m! = m (m-1)!

L[φm-χmφm−1]=hRm(η), (2.5.13)

Where

χm =

{
0 whenm ≤ 1

1 whenm > 1
,

Rm(η) = φ′′′m−1(η) +
m−1∑
k=0

φm−1−k(η)φ
′′
k(η)−

m−1∑
k=0

φ′m−1−k(η)φ
′
k(η), (2.5.14)

with boundary conditions

φm(0) = φ′m(0) = φ′m(+∞)=0, (2.5.15)

We obtain linear equations forφm (m ≥ 1),

In (2.5.13), putting m = 1, h = 1

χm = 0(
∂3

∂η3
+

∂2

∂η2

)
φ1=φ′′′0 (η) + φ0(η)φ

′′
0(η)− φ′0(η)φ′0(η),

φ 1=0, (2.5.16)

In (2.5.13), putting m = 2 , h = 1

χm = 1,
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(
∂3

∂η3
+

∂2

∂η2

)
φ2 −

(
∂3

∂η3
+

∂2

∂η2

)
φ1=φ1

′′′(η) + φ1(η)φ1
′′(η)− φ′1(η)φ′1(η),

(
∂3

∂η3
+

∂2

∂η2

)
φ2=2φ1

′′′(η) + φ1
′′(η) + φ1(η)φ1

′′(η)− φ′1(η)φ′1(η)−Nφ′1(η)

φ 2=0 (2.5.17)

In (2.5.13), putting m = 3 , h = 1

(
∂3

∂η3
+

∂2

∂η2

)
φ3 −

(
∂3

∂η3
+

∂2

∂η2

)
φ2=φ2

′′′(η) + φ2
′′(η) + φ2(η)φ0

′′(η)+

φ1(η)φ1
′′(η) + φ0(η)φ2

′′(η)− φ′2(η)φ′0(η)− φ′1(η)φ′1(η)− φ′0(η)φ′2(η)(
∂3

∂η3
+

∂2

∂η2

)
φ3=2φ2

′′′(η) + φ2
′′(η) + φ2(η)φ0

′′(η) + φ1(η)φ1
′′(η)+

φ0(η)φ2
′′(η)− 2φ′2(η)φ

′
0(η)− φ′1(η)φ′1(η)

φ 3=0 (2.5.18)

We have

f(η) = φ0 + φ1 + φ2 + φ3 + · · ·

f(η) = 1-e-η (2.5.19)

It is observed the final solution f(η) obtained agrees with the initial approximation f0(η),

which satisfy the differential equation and boundary conditions. Other initial approxima-

tion f0(η) can also be chosen to suit our requirements.

We can generate large number of terms solving the linear equations by MATHEMAT-

ICA, Because of availability of large number of coefficients, we can use Pade’s approxima-

tion to test the convergence of this series and is found convergent.



Chapter 3

Analytical Solution of Flow Past A

Permeable Shrinking Sheet

3.1 Governing Equations

Consider the Newtonian fluid past a permeable shrinking sheet which is electrically

conducting and magnetic field in applied perpendicular to the fluid flow. A boundary layer

is formed due to the flow . Heat transfer is due to internal heat absorption or generation.

The sheet coincides with x - axis and flow is confined to region y > 0 . The governing

boundary layer equations [8] are

∂u

∂x
+
∂v

∂y
= 0, (3.1.1)

u
∂u

∂x
+ v

∂u

∂y
= νm

∂2u

∂y2
− σBo

2

ρ
u, (3.1.2)

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρCp

∂2T

∂y2
+

Q0

ρCp
(T − T∞) (3.1.3)

where x and y are distances along and perpendicular to the sheet, u and v are compo-

nents of the velocity along x and y directions, respectively, νm = µ
ρ

is kinematic viscosity,

22
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ρ is fluid density, σ is electrical conductivity, Bo is the strength of the magnetic field. T is

the temperature, T∞ is free stream temperature, κ is thermal conductivity of the fluid, Q0

is volumetric rate of heat absorption or generation.

The corresponding boundary conditions are,

u(x, 0) = Uw = −cx, v(x, 0) = −vw, (3.1.4)

u→ 0 as y →∞.

T (x, 0) = Tw, (3.1.5)

T → T∞ as y →∞.

where c > 0 is the shrinking sheet. Tw is temperature of the sheet, vw represents the wall

mass suction through the porus sheet.

The stream function ψ introduce as below

u =
∂ψ

∂y
and v = −∂ψ

∂x
, (3.1.6)

The dimensionless variables for ψ and T are introduced as

ψ = −
√
cνxf(η), (3.1.7)

and

T = T∞ + (Tw − T∞)θ(η), (3.1.8)

The similarity variable η is given by

η = y(
c

ν
)1/2, (3.1.9)

Using (3.1.6) to (3.1.9) in (3.1.1),(3.1.2) and (3.1.3), we obtain the following ordinary

differential equations in self similar forms as
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f ′′′ + ff ′′ − (f ′)
2 −M2f ′ = 0, (3.1.10)

θ′′ + Pr (fθ′ − λθ) = 0, (3.1.11)

with boundary conditions

f(0) = s, f ′(0) = −1, f ′(+∞) = 0, (3.1.12)

θ(0) = 0, θ(+∞) = 0. (3.1.13)

where f and g are functions related to the velocity field, M is magnetic parameter. The

primes denote differentiation with respect to η. s = νm
(cv)1/2 (> 0) is mass suction parameter.

3.2 Homotopy Analysis Method

To apply the homotopy analysis method [ 1,2] to the problem considered, we first select

the auxiliary linear operatorL as

L =
∂3

∂η3
+

∂2

∂η2
. (3.2.1)

Then, we construct a family of partial differential equations as follows

(1− p)L[F (η, p)− f0(η)] = hp

{
∂3F

∂η3
+ F

∂2F

∂η2
−
(
∂F

∂η

)2

−M2∂F

∂η

}
, (3.2.2)

(1− p)L[G(η, p)− g0(η)] = hp

{
∂2G

∂η2
+ Pr F

∂G

∂η
− PrλG

}
, (3.2.3)

with boundary conditions

F (0, p) = 0, Fη(0, p) = 1, Fη(∞, p) = 0, (3.2.4)
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G(0, p) = 0, G(∞, p) = 0, (3.2.5)

where Fη denotes the first-order derivative of F (η, p) with respect to η, Gη denotes the

first-order derivative of G(η, p) with respect to η, p ε [0, 1] is the embedding parameter,

h 6= 0 is an non zero auxiliary parameter.

We derive the initial guess f0(η) and g0(η) as follows in accordance with boundary

conditions (3.2.4) and (3.2.5) as

f0(η) = s− 1 + e−η, (3.2.6)

g0(η) = e−η. (3.2.7)

When p = 0, we have the solution

F (η, 0) = f0(η), (3.2.8)

G(η, 0) = g0(η). (3.2.9)

When p = 1, equations (3.2.2) - (3.2.5) are the same as (3.1.10) - (3.1.13), respectively, so

that

F (η, 1) = f(η), (3.2.10)

G(η, 1) = g(η). (3.2.11)

Thus as p increases from 0 to 1, the solution varies from the initial guess approximation

f0(η) and g0(η) to the solution f(η) and g(η) respectively.

The initial guess approximation f0(η) and g0(η) , the auxiliary linear operator L and

the auxiliary parameter h are assumed to be selected such that the equations (3.2.2) and

(3.2.3) with boundary condition (3.2.4) and (3.2.5) have solution at each point of p ε [0, 1].
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The solution can be expressed in Maclaurin series as

F (η, p) = F (η, 0) +
+∞∑
k=1

pk

k!

∂kF (η, p)

∂pk

∣∣∣∣
p= 0

, (3.2.12)

G(η, p) = G(η, 0) +
+∞∑
k=1

pk

k!

∂kG(η, p)

∂pk

∣∣∣∣
p= 0

. (3.2.13)

Defining

φ0(η) = F (η, 0) = f0(η),

φk(η) =
1

k!

∂kF (η, p)

∂pk

∣∣∣∣
p= 0

(k > 0), (3.2.14)

ψ0(η) = G(η, 0) = g0(η),

ψk(η) =
1

k!

∂kG(η, p)

∂pk

∣∣∣∣
p= 0

(k > 0). (3.2.15)

We have due to (3.2.12) - (3.2.13) that

F (η, p) = φ0(η) +
+∞∑
k=1

φk(η)p
k, (3.2.16)

G(η, p) = ψ0(η) +
+∞∑
k=1

ψk(η)p
k. (3.2.17)

The convergence region of the above series depends upon the linear operator L and the

non-zero parameter h which is to be selected such that solution converges at p = 1. Using

equation (3.2.14) for p = 1, we get

f(η) = φ0(η) +
+∞∑
m=1

φm(η), (3.2.18)

g(η) = ψ0(η) +
+∞∑
m=1

ψm(η). (3.2.19)
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Here φm and ψm are unknowns to be determined.

Differentiating m times the two sides of equations (3.2.2) about the embedding param-

eter p, using Leibnitz theorem, setting p = 0 and dividing by m!, we get

L[φm − χmφm−1] = hRm(η), (3.2.20)

where

χm =

{
0 when m ≤ 1

1 when m > 1 ,
(3.2.21)

Rm(η) = φm−1
′′′(η) +

m−1∑
k=0

φm−1−k(η)φk
′′(η)−

m−1∑
k=0

φ′m−1−k(η)φ
′
k(η)−M2φ′m−1(η),

(3.2.22)

with boundary conditions

φm(0) = φ′m(0) = φ′m(+∞) = 0. (3.2.23)

Similarly differentiating m times both sides of equations (3.2.3) about the embedding

parameter p, using Leibnitz theorem, setting p = 0 and dividing by m!, we get

L[ψm − χmψm−1] = hWm(η), (3.2.24)

where

χm =

{
0 when m ≤ 1

1 when m > 1 ,
(3.2.25)

Wm(η) = ψ
′′
m−1(η) + Pr

∑m−1
k=0 φm−1−k(η)ψ

′

k(η)− Prλψ
′
m(η), (3.2.26)

with boundary conditions

ψm(0)=0, ψm(+∞)=0. (3.2.27)
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From equations (3.2.20) we get equations in terms of φm(η) , solving them we get

φ0, φ1, φ2, φ3, ... Thus

f(η) = φ0 + φ1 + φ2 + φ3 + ... (3.2.28)

From equations (3.2.24) we get equations in terms of ψm(η)(m ≥ 1) , solving them we get

ψ1, ψ2, ψ3 ...

We have

g(η) = ψ0 + ψ1 + ψ2 + ψ3 + ... (3.2.29)

The solutions f and g consists of h and is a series solution. To get a valid solution we

have to choose h in such a way that both series are convergent. We can generate large

number of terms on solving the linear equations by MATHEMATICA.
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M = 1.5, 2, 2.5, 3

S = 2,  Pr = 0.7
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Figure 3.1:Velocity Profiles for several values of M
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Figure 3.2:Temperature Profiles for several values of M
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s = 1, 1.5, 2, 3

M = 2, Pr = 0.7,  Λ = 0.5
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Figure 3.3:Velocity Profiles for several values of s
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Figure 3.4:Temperature Profiles for several values of s
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3.3 Result and Discussions

Figure 3.1 represent velocity curves plotted f ′(η) obtained from homotopy analysis

method (HAM) with reference to η for different values of M = 1.5, 2, 2.5, 3.0. with s = 2,

Pr = 0.7, λ = 0.5.

Figure 3.2 represent Temperature profiles plotted θ(η) with reference to η fdifferent

values of M = 1.5, 2, 2.5, 3.0. with s = 2, Pr = 0.7, λ = 0.5.

Figure 3.3 represent velocity curves plotted f ′(η) obtained from homotopy analysis

method (HAM) with reference to η for different values of s = 1, 1.5, 2, 3.0. with M = 2, Pr

= 0.7, λ = 0.5.

Figure 3.4 represent Temperature profiles plotted θ(η) with reference to η different val-

ues of s = 1, 1.5, 2, 3.0. with M = 2, Pr = 0.7, λ = 0.5.

The solution obtained contains exponential of negative powers of unknown variable so

the solution is convergent.

Figures 3.1, 3.2, 3.3, 3.4 match with the solutions obtained by [8]

Thus we conclude that the solutions obtained by HAM coincide with numerical solu-

tion obtained by Krishnendu Bhattacharyya [8].

We can use homotopy analysis method which gives good accurate solution to boundary

value problems and may be treated as strong analytic method to solve non linear differential

equations.



Chapter 4

Analytical Solution of Unsteady

Laminar Incompressible Flow in the

Presence of Transverse Magnetic Field

4.1 Introduction

Magneto hydrodynamics stagnation point flows are relevant to many engineering ap-

plications such as Metallurgy Industries, MHD pumps, Heat Exchangers, Petroleum Engi-

neering. Many scientists have studied such problems.

4.2 Mathematical formulation of the problem

The unsteady, laminar incompressible flow of a viscous fluid in the presence of trans-

verse magnetic field near the stagnation point of a flat sheet coinciding with the plane y =

0 , the flow being confined to positive direction of y - axis. Initially the surface is at rest in

an unbounded quiescent fluid with uniform temperature . Magnetic field is applied along

32
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Figure 4.1 : Flow Configuration

positive direction of x - axis.

At time t > 0, the surface is suddenly stretched with the local tangential velocity uw = bx

( b is a positive constant) keeping the origin fixed and x- coordinate measured along the

stretching surface from the stagnation point O.

For t > 0 , The velocity distribution in the potential flow (free stream velocity), given by

ue = ax (a is a positive constant), starts impulsively in motion from rest. Flow becomes

unsteady due to the impulsive motion of sheet.

u and v are velocity components along x and y - directions, respectively; T is the tempera-

ture;The unsteady boundary layer equations can be written as

∂u

∂x
+
∂v

∂y
= 0, (4.2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= a2x+ ν

∂2u

∂y2
− σB2

0u

ρ
(4.2.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(4.2.3)
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with the initial and boundary conditions:

t < 0, u(x, y, t) = v(x, y, t) = 0, T(x, y, t) = T∞, for all x, y (4.2.4)

t ≥ 0, u(x, y, t) = uw=bx,v(x, y, t) = 0, T(x, y, t) = Tw, for y = 0 (4.2.5)

u(x, y, t) = ue=ax,T(x, y, t) = Tw, for y→∞. (4.2.6)

ν and α denote kinematic viscosity and thermal diffusivity respectively. The subscripts

e, w, and∞ denote the conditions at the edge of the boundary-layer, on the wall and in the

free stream, respectively.

The stream function ψ and the similarity transformations are taken as

η =
(
b
ν

)1/2
ξ − 1/2y, ξ = 1 − e− b t, u = ∂ψ

∂y
, v = −∂ψ

∂x
, ψ(x, y, t) = (bν)1/2ξ 1/2xf(η, ξ),

u = bxf ′(η, ξ),

v = −(bν)1/2ξ 1/2f(η, ξ), Pr = ν
α

, T = T∞ + (Tw − T∞)G(η, ξ).

Equations (4.2.1) - (4.2.3) reduce to the system of non linear partial differential equations

∂3f

∂η3
+
(η
2

)
(1− ξ)∂

2f

∂η2
+ ξ

(
λ2 + f

∂2f

∂η2
−
(
∂f

∂η

)2
)

−σB
2
0

ρ

(
∂f

∂η

)
− ξ(1− ξ) ∂

2f

∂η∂ξ
= 0, (4.2.7)

1

Pr

∂2G

∂η2
+
(η
2

)
(1− ξ)∂G

∂η
− ξ(1− ξ)∂G

∂η
+ f

∂G

∂η
= 0 (4.2.8)

subject to boundary conditions

f(0, ξ) = 0, f ′(0, ξ) = 1, f ′(∞, ξ) = λ (4.2.9)

G(0, ξ) = 1, G(∞, ξ) = 0 (4.2.10)
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Here λ = a/b is a positive constant denoting velocity ratio parameter;

η and ξ are the transformed dimensionless independent variables; ψ is the stream function;

f is the dimensionless stream function; f ′ is the dimensionless velocity; G is dimensionless

temperature and Pr is the Prandtl number.

The study is first to present application of HAM to an unsteady flow

The two special cases are

initial steady state : ξ = 0

final unsteady state : ξ = 1

Equations (7) to (10), for unsteady flow reduce to

∂3f

∂η3
+
(η
2

) ∂2f
∂η2
−M

(
∂f

∂η

)
= 0 (4.2.11)

1

Pr

∂2G

∂η2
+
(η
2

) ∂G
∂η

= 0 (4.2.12)

f(0, 0) = 0, f ′(0, 0) = 1, f ′(∞,0)=λ (4.2.13)

G(0,0)=1,G(∞,0)=0 (4.2.14)

4.3 Homotopy Analysis Method (HAM)

To apply the homotopy analysis method to the problem (4.2.11) under boundary condi-

tion (4.2.13), we first select the auxiliary linear operator as

L =
∂3

∂η3
+

∂2

∂η2
, (4.3.1)

Then we construct a family of partial differential equations

(1− p)L [F (η, p)− f0(η)] = hp

{
∂3F

∂η3
+
η

2

∂2F

∂η2
−M∂F

∂η

}
(4.3.2)
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with boundary conditions

F (0, p) = 0, Fη(0, p) = 1, Fη(+∞, p) = 0, (4.3.3)

where subscript η denotes the first-order derivative with respect to η , p ∈ [0, 1] is the

embedding parameter, h is an non zero auxiliary parameter. We choose the initial guess

f0(η) as follows in accordance with boundary conditions (4.2.13) as

f0(η) = (1− λ) + λη + (λ− 1)e−η, (4.3.4)

When p = 0, we have the solution

F (η, 0) = f0(η), (4.3.5)

when p = 1, equation (4.3.2) is the same as (4.2.11) , so that

F (η, 1) = f(η), (4.3.6)

Thus as p increases from 0 to 1, the solution varies from the initial guess f0(η) to the

exact solution f(η) . The initial guess approximation f0(η) , the linear operator L and

the parameter h are to be selected such that the equation (4.3.2) has solution at each point

p ∈ [0, 1] and also F (η, p) can be expressed in Maclaurin series as

F (η, p) = F (η, 0) +
+∞∑
k=1

pk

k!

∂kF (η, p)

∂pk

∣∣∣∣ p= 0, (4.3.7)

Defining

φ0(η) = F (η, 0) = f0(η)
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,

φk(η) =
1

k!

∂kF (η, p)

∂pk

∣∣∣∣ p= 0(k > 0), (4.3.8)

Equation (4.3.7) becomes

F (η, p) = φ0(η) +
∞∑
k=1

φk(η)p
k. (4.3.9)

The convergence region of the above series depends upon the linear operator L and the

non-zero parameter h which are to be selected such that solution converges at p = 1. Using

p = 1 in equations (4.3.9) , we get

f(η) = φ0(η) +
∞∑
m=1

φm(η), (4.3.10)

where φm(η) are the unknowns to be determined.

Differentiating equation (4.3.2) m times about the embedding parameter p, using Leib-

nitz theorem, setting p = 0 and dividing by m!, we get

L [φm − χmφm−1] = hRm(η), (4.3.11)

where

χm =

{
0 when m ≤ 1

1 when m > 1,
(4.3.12)

Rm[η] = φ
′′′

m−1 +
(η
2

)
φ

′′

m−1 −Mφ
′

m−1, (4.3.13)

with boundary conditions

φm(0) = φ
′

m(0) = φ
′

m(∞) = 0. (4.3.14)

f(η) = φ0(η) +
∞∑
m=1

φm(η), (4.3.15)
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Figure 4.2 : M = 0,
(a)λ = 1, (b)λ = 0.1, (c)λ = 0.3,

(d)λ = 0.5, (e)λ = 2, (f)λ = 3, (g)λ = 5.

Figure 4.3: M = 0.5
(a)λ = 1, (b)λ = 0.1, (c)λ = 0.3,

(d)λ = 0.5, (e)λ = 2, (f)λ = 3, (g)λ = 5.
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Figure 4.4: M = 1
(a)λ = 1, (b)λ = 0.1, (c)λ = 0.3,

(d)λ = 0.5, (e)λ = 2, (f)λ = 3, (g)λ = 5.

4.4 Results and Discussions

Graphs are plotted f ′(η) versus η for different values of velocity ratio parameter λ, and

different values of M .

Figure 4.2 represent velocity curves plotted f ′(η) with reference to η for different val-

ues of λ = 1, 0.1, 0.3, 0.5, 2, 3. with M = 0.

Figure 4.3 represent velocity curves plotted f ′(η) with reference to η for different val-

ues of λ = 1, 0.1, 0.3, 0.5, 2, 3. with M = 0.5

Figure 4.4 represent velocity curves plotted f ′(η) with reference to η for different val-

ues of λ = 1, 0.1, 0.3, 0.5, 2, 3. with M = 1.

Boundary layer thickness is considerably reduced with the effect of MHD. This is a

important discovery and will contribute to Boundary layer theory.



Chapter 5

Summary, Conferences - Paper

Presented/Attended and Reference

5.1 Summary

This chapter highlights the Analytical Method of solving non linear boundary value

problems, i.e., the importance of Homotopy Analysis Method and the plan of future work.

In Chapter 1 basic definitions of fluid mechanics,Boundary layer theory, mathematical

methods, Homotopy analysis method, review of literature, need and scope of research is

discussed.

Chapter 2 deals with introduction to Homotopy analysis method. The illustration of the

method is dealt in detail by an example.

Chapter 3 deals with problems discussed by Krishnendu Bhattacharyya [8] . Homo-

topy analysis method is used to solve the problem and using the solution obtained graphs

are drawn. The results obtained are compared with the results obtained in [8] by numerical

methods which confirms that Homotopy analysis method is a efficient method .

40
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In Chapter 4 The study of unsteady, laminar incompressible flow of a viscous fluid in

the presence of transverse magnetic field near the stagnation point of a flat sheet coinciding

with the plane y = 0 , the flow being confined to positive direction of y - axis is discussed.

The important observation is Boundary layer thickness considerably reduces with the

effect of Magnetic Field. This result is a important discovery and will contribute to Bound-

ary layer theory.

Conferences - Paper Presented/Attended

• Presented a paper ” Analytical solution of a flow of a Navier Stokes fluid due to

stretching Boundary ” at International Conference on Mathematical modeling and

Non linear equations organized Department of Mathematics; B N M Institute of

Technology , Bangalore on 20 - 22 January 2010.

• Presented a paper ”Homotopy analysis method applied to stretching sheet problems”

at National Conference on ”Emerging Trends in Fluid Mechanics and Graph Theory

” at Christ University, Bangalore on February 25 and 26, 2010.

• Presented a paper ”A New Analytical Solution To Boundary Layer Problem” at II

National Conference on ”Emerging Trends in Fluid Mechanics and Graph Theory ”

at Christ University, Bangalore on February 11 and 12, 2011.

• Presented as a paper ”Strong Approxmate Analytic Solution Of A Boundary Layer

Problem ” at International Conference on ”Mathematical Modelling And Applica-

tions To Industrial Problems (MMIP2011)” at National Institute of Technology Cali-

cut, Kerala, India, during March 28-31, 2011.
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• Presented a paper ”Homotopy Analysis Method of A Boundary Layer Problem ” at

National Conference on ”Emerging Trends In Information Technology And Mathe-

matics (ETITM 2011)” at East West Institute of Technology , Bangalore, India during

November 3 - 4 , 2011.

• Presented a paper ”Homotopy Analysis Solution for MHD Sink Flow ” at National

Conference on ”Frontiers in Applied Mathematics” organized by Research Centre

in Applied Mathematics, MES College, Malleswaram, Bangalore on 9th and 10th

March 2012.

• Presented a paper ”Boundary Layer Problem in MHD And Sink Flow” at National

Conference on DOCAM’ 2012 during May 18 - 19, 2012 at East West Institute of

Technology, Bangalore, India.

• Attended an ” International Conference on Fluid Mechanics and Graph Theory ”,

ICFGD 2012, held on 16th and 18th August, 2012 at Christ University, Bangalore.

• Presented a paper ”Approximate Analytical Solution For Compressible Boundary

Layer Problem” at 57th Congress of ISTAM (An International Meet), held on 17th -

20th December, 2012 at Defence Institute of Advanced Technology, Pune.
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