
Introduction to Data Structures Using C

A data structure is an arrangement of data in a computer's memory or even disk storage. An
example of several common data structures are arrays, linked lists, queues, stacks, binary
trees, and hash tables.

Algorithms, on the other hand, are used to manipulate the data contained in these data
structures as in searching and sorting

Name Position
Aaron Manager

Charles VP

George Employee

Jack Employee

Janet VP

John President

Kim Manager

Larry Manager

Martha Employee

Patricia Employee

Rick Secretary

Sarah VP

Susan Manager

Thomas Employee

Zack Employee

But only one view of the company is shown by the above list. You also want the database to
represent the relationships between employees and management at ABC. It does not tell you
which managers are responsible for which workers and so on, although your list contains both
name and position. After thinking about the problem for a while. You decide that the tree
diagram is much better structure for showing the work relationships at the ABC company.

VIJAYA COLLEGE Page 1�

These two above diagrams are examples of the different data structures. Your data is
organized into a list, in one of the data structures which is above. The employees name can be
stored in alphabetical order so that we can locate the employee's record very quickly. For
showing the relationships between employees these structure is not very useful. The tree
structure is a much better suited for this purpose.

The data structures are an important way of organizing information in a computer. There are
many different data structures that programmers use to organize data in computers, just like
the above illustrated diagrams. Some of the data structures are similar to the tree diagram
because they are good for representing the relationships between different data. Other
structures are good for ordering the data in a particular way like the list of employees which is
shown above. Each data structure has their own unique properties that make it well suited to
give a certain view of the data.

Pointers and Indirection

The problem with representing Data Structures Using C that are not linear. We need some way
to map these data structures to the computer's linear memory. One solution to this, is to use
pointers.
Pointers are the memory locations that are stored in the memory cells. By using a pointer, by
holding a memory address rather than the data one memory cell can point to another memory
cell.

The memory cell at address 2003 contains a pointer the address of another cell,
which can be seen in the above figure. Here the pointer is pointing to the memory
cell 2005 which contains the letter C. This means that, we have two ways of
accessing the letter C. We can refer to the memory cell which contains the value C
directly or we can use the pointer to refer to it indirectly. The process of accessing
the data through pointers is known as indirection. Using pointers, we can also create
multiple levels of indirection.

VIJAYA COLLEGE Page 2�

Linear Data Structures

Pointers can become very complex and difficult to use by having many levels of indirection.
When used pointers incorrectly, it can make data structures very difficult to understand. The
tradeoff between complexity and flexibility should be consider whenever you use pointers in
constructing data structures.

The idea of pointers and indirection is not exclusive to the computer memory. Pointers appear
in many different aspects of computer's usage. Hyperlinks in web pages is a good example
pointers. This links are really the pointers to the other web page. Perhaps you have even
experienced the double indirection when you went to visit the familiar web site and found the
site had moved. You saw a notice that the web pages had been moved and a link to the new
site, instead of the page you expected.

We saw that it is very simple to create data structures that are organized similar to the way
the computer's memory is organized. For example, the list of employee's from the ABC
company is a linear data structure.

Since the computer's memory is also linear, it is very easy to see how we can represent this
list with the computer's memory. Any data structure which organizes the data elements one
after the other is known as linear data structure. So far we have seen two examples of linear
data structures: the string data structure and the ABC company list.

You may have noticed that these two examples of linear data structures resemble to each
other. This is because they both are really different kinds of lists. In general, all linear data
structures look like the list. However, this does not mean that all the linear data structures are
exactly the same. Suppose I want to design a list to store the names of the ABC employees in
the computer. One possible design is to organize the names similar to the example picture
above. Another possible design is to use the pointers we learned about in the last lesson.
While these two designs provide the same functionality the way they are implemented in the
computer is much different. This means that there is an abstract view of a list which is distinct
from any particular computer implementation

You may have also noticed that the picture of the ABC employees is not as exactly the same
as the original list. When we make a list of names, we tend to organize this list into a column
rather than a row. In this case, the conceptual or logical representation of a list is the column
of names. However, the physical representation of the list in the computer's memory is the
row of strings. For most data structures, the way that we think about them is far different
from the way they are implemented in the computer. In other words, the physical
representation is much different from that of the logical representation, especially in data
structures that use pointers.

VIJAYA COLLEGE Page 3�

Ordered List: The Abstract View

The most common linear data structure used is the list. By now you are already pretty familiar
with the idea of a list and at least one way of representing a list in the computer. Now we are
going to look at a particular kind of list: an ordered list. Ordered lists are very similar to the
alphabetical list of employee names for the ABC company. These lists keep items in a specific
order such as alphabetical or numerical order. Whenever an item is added to the list, it is
placed in the correct sorted position so that the entire list is always sorted.

Before we consider how to implement such a list, we need to consider the abstract view of an
ordered list. Since the idea of an abstract view of a list may be a little confusing, let's think
about a more familiar example. Consider the abstract view of a television. Regardless of who
makes a television, we all expect certain basic things like the ability to change channels and
adjust the volume. As long as these operations are available and the TV displays the shows we
want to view, we really don't care about who made the TV or how they chose to construct it.
The circuitry inside the TV set may be very different from one brand to the next, but the
functionality remains the same. Similarly, when we consider the abstract view of an ordered
list, we don't worry about the details of implementation. We are only concerned with what the
list does, not how it does it.

Suppose we want a list that can hold the following group of sorted numbers: [2 4 6 7]. What
are some things that we might want to do with our list? Well, since our list is in order, we will
need some way of adding numbers to the list in the proper place, and we will need some way
of deleting numbers we don't want from the list. To represent these operations, we will use
the following notation:

AddListItem(List, Item)
RemoveListItem(List, Item)

Each operation has the name and the list of parameters the operation needs. The parameter
list for the AddListItem operation includes a list and an item. The RemoveListItem operation is
very similar except this time we will specify the item we want to remove. These operations are
part of the abstract view of an ordered list. They are what we expect from any ordered list
regardless of how it is implemented in the computer's memory.

Array Implementation

One approach to creating a list is simply to reserve a block of adjacent memory cells to large
enough to hold the entire list. Such a block of memory is called as array. Of course, since we
want to add items to our list, we need to reserve more than just four memory cells. For now,
we will make our array large enough to hold as much as six numbers.

Pointer Implementation

A second approach to creating a list is to link groups of memory cells together using the
pointers. Each group of memory cells is called as a node. With this implementation every node

VIJAYA COLLEGE Page 4�

contains the data item and the pointer to the next item in the list. You can picture this
structure as a chain of nodes linked together by the pointers. As long as we know where the
chain begins, we can follow the links to reach any item in the list. Often this structure is called
as a linked list.

Notice that the last memory cell in our chain contains the symbol called "Null". This symbol is
a special value that tells us that we have reached the end of our list. You can think that this
symbol as a pointer that points to nothing. Since we are using the pointers to implement our
list, the list operations AddListItem and the RemoveListItem will work differently than they did
for sequential lists.

Linear Data Structures

Stack is the other common linear data structure which is been used now a days. Just like we
did with the ordered list, we will examine the abstract view of the stack first and then look at
the couple of ways a stack can be implemented.

Stack is very similar to a list except that a stack is more restricted. The figure below should
give you an good idea of the abstract view of what stack is. Follow the directions to
manipulate the simple stack and learn about the operations that the stack provides.

By seing the figure above you can see that this data structure is really a restricted list. You

VIJAYA COLLEGE Page 5�

have restricted the access to one end of the list by using the pop and push operations. The
result of this restriction is that items in the list will be stored one on top of the other. We must
first remove all the items above it till you get to the bottom item. "Last-In, First-Out" or LIFO,
which is used to describe the behavior, since the last item to enter the stack is the first item to
leave the stack. The top item is the item always the last item to enter the stack and it is
always the first item to leave the stack since no other items can be removed until the top item
is removed.

PushStackItem(Stack, Item)
Item PopStackItem(Stack)

The PushStackItem operation has two parameters which are, the stack and an item. This
operation adds the item to the top of the specified stack, the item and the stack which is
specified in the above function. The PopStackItem operation only takes one parameter which
is a stack(stack name). However, notice that this operation has the keyword Item listed to the
left of the PopStackItem keyword. This keyword is used to represents the item that is removed
from the top of the stack when the PopStackItem operation is done. These two
operations(PushStackItem and PopStackItem) are part of the abstract view of the stack.

Pointer Implementation in the Stack

In order to implement a stack using pointers, we need to link nodes together just like we did
for the pointer implementation of the list. Each node contains the stack item and the pointer to
the next node. We also need a special pointer(stack pointer) to keep track of the top of our
stack.

Stack Operations:

push(new-item:item-type)

Adds an item onto the stack.

VIJAYA COLLEGE Page 6�

top():item-type
Returns the last item pushed onto the stack.

pop()
Removes the most-recently-pushed item from the stack.

is-empty():Boolean
True iff no more items can be popped and there is no top item.

is-full():Boolean
True iff no more items can be pushed.

get-size():Integer
Returns the number of elements on the stack.

All operations except get-size() can be performed in O(1) time. get-size() runs in at
worst O(N).

Queues

The Queue is the final linear data structure that we will examined. Like the stack, the queue is
also a type of restricted list. Instead of restricting all the operations to only one end of the list
as a stack does, the queue allows items to be added at the one end of the list and removed at
the other end of the list. The figure below should give you a good idea of the abstract view of
the queue.

This restrictions placed on a queue cause the structure to be a "First-In, First-Out" or FIFO
structure. This idea is similar to customer lines at a in any bill payment store(eg. phone bill
payment queue). When customer A is ready to check out, he or she enters the tail(end) of the
waiting line. When the preceding customers have paid, then customer A pays and exits from
the head of the line. The bill-payment line is really a queue that enforces a "first come, first
serve" policy.

We will represent these two operations with the following notation:

EnqueueItem(Queue, Item)
Item DequeueItem(Queue)

These two operations are very similar to that of the operations we learned for the stack data
structure. Although the names are different, the logic of using the parameters is the same.
The EnqueueItem(enter the queue item) operation takes the Item parameter and adds it to
the tail(end) of Queue. The DequeueItem(delete queue item) operation removes the head
item of Queue and returns this as Item. Notice that we represent the returned item with a
keyword located to the left of the operation name. These two operations are part of the
abstract view of a queue. Regardless of how we choose to implement our queue on the
computer, the queue must support these two operations.

VIJAYA COLLEGE Page 7�

The Implementation View

When we looked at the ordered list and stack data structures, we saw two different ways to
implement each one of them. Although the implementations were different, the data structure
was still the same from the abstract point of view for both stack and ordered list. We could still
use the same operations on the data structures regardless of their implementations. With the
queue, it is also possible to have various implementations that support the operations
EnqueueItem and DequeueItem. The distinction between the logical representation of the
queue and the physical representation of the queue. Remember that the logical representation
is the way that we think of the way data being stored in the computer. The physical
representation is the way the way data is actually organized in the memory cells(computer
memory).

Now let's consider how the EnqueueItem and DequeueItem operations might be implemented
in the queue. To store letters into the queue, we could advance the tail pointer by one location
and add the new letter in the queue. To dequeue(delete) letters, we could remove out the
head letter and increase the head pointer by one location. While this approach seems very
straight forward, it has a serious problem. As items are added and removed, our queue will
march straight through the entire memory of the computer. We have not limited the size of
our queue to a fixed amount of size.

Perhaps we could limit the size of the queue by not allowing the tail pointer to advance beyond
the certain memory location. This implementation would stop the queue from traversing the
entire memory, but it would only allow us to fill the queue one time. Once the head and tail
pointers reached the stop location, our queue would no longer work untill we delete some data
from it.

Trees: The Abstract View

Another common nonlinear data structure is the tree.

In this diagram above, we can see that the starting point, or the root node, is circled in blue
colour. A node is a simple structure that holds data and links to other nodes.

In this case, our root node contains the data string "John" and three links to the other nodes.
Notice that the group of nodes circled in red do not have any links(childs). These nodes are at
the end of the branches and they are appropriately called as leaves or leaf nodes. In our
diagram, the nodes are interconnected with solid black lines called arcs or edges. These edges
show the relationships between the nodes in the tree.

VIJAYA COLLEGE Page 8�

One important relationship in the binary tree is the parent-child relationship. Parent nodes
have at least one edge to the node lower in the tree. This lower node is called the child node.
Nodes can have more than one child, but the children can only have a single parent. Notice
that the root node has no parent, and the leaf nodes has no children. Final feature to note in
our diagram is the subtree. At each level of the tree, we can see that the tree structure is
repeated. For example, the two nodes representing "Charles" and "Rick" compose a very
simple tree with "Charles" as the root node and and "Rick" as a single leaf node.

Trees are implemented in the computer's memory. We will begin by introducing the simple
tree structure called the binary tree. Binary trees have the restriction that nodes can't have
more than two children. With this restriction, we can easily determine how to represent a
single binary node in the memory. Our node will need to reserve memory for the data and two
pointers(for pointing two childs of that node).

Structure of a binary node:

Using our binary nodes, we can construct a binary tree. In the data cell of each node, we will
can store a letter. The physical representation of our tree might look something like the figure
below:

Introduction to Graphs

The last data structure that we will study in this tutorial is the graphs. Graphs are similar to
trees except that, they do not have as many restrictions.

In the previous tutorial, we saw that every tree has a root node, and all the other nodes in the
tree are children of a perticular node. We also saw that the nodes can have many children but

VIJAYA COLLEGE Page 9�

only one parent. When we relax these restrictions, we get the graph data structure. The logical
representation of a typical graph might look something like the figure shown below:

It is not hard to imagine how the graph data structure could be useful for representing the
data. Perhaps each of the nodes above could represent a city and the edges connecting the
nodes could represent the roads. Or we could use a graph to represent a computer network
where the nodes are workstations and the edges are the network connections. Graphs have so
many applications in the computer science and mathematics that several algorithms have
been written to perform the standard graph operations such as searching the graph and
finding the shortest path between nodes of a graph.

Notice that our graph does not have any root node like the tree data structure. Instead, any
node can be connected with any other node in the graph. Nodes do not have any clear parent-
child relationship like we saw in the tree. Instead nodes are called as neighbors if they are
connected by an edge. For example, node A above has three neighbors: B, C, and D.

Now that you have a basic idea of the logical representation of the graphs, let's take a look at
one way that graphs are commonly represented in computers. The representation is called an
adjacency matrix, and it uses the two-dimensional array to store the information about the
graph nodes. The adjacency matrix for our graph is given below.

 A B C D E F
A
B
C
D
E
F

-- 1 1 1 -- --
1 -- 1 -- 1 --
1 1 -- -- -- --
1 -- -- -- 1 1
-- 1 -- 1 -- --
-- -- -- 1 -- --

Notice that the matrix shown above has six rows and six columns labeled with the nodes from
the graph. We mark a '1' in a cell if there exists an edge from two nodes that index that cell.
For example, since we have a edge between A and B, we mark a '1' in the cells indexed by A

VIJAYA COLLEGE Page 10�

and B. These cells are marked with a dark gray background in the adjacency matrix. With our
adjacency matrix, we can represent every possible edge that our graph can have.

Quiz for Data Structures Using C

1. _____________ Memory is Volatile

 main

 Random Access

 Both 1 and 2

 Virtual

2. An _________ data type is a keyword of a programming language that
specifies the amount of memory needed to store data and the kind of data
that will be stored in that memory location

 abstract

 int

 vector

 None of these

3. Which of the following abstract data types are NOT used by Integer
Abstract Data type group?

 Short

 Int

 float

 long

4. The hashString() member function is called by other member functions of
the Hashtable class whenever a function needs to convert a

 a hash number key to a key

 key to a hash number key

VIJAYA COLLEGE Page 11�

 a key to an Index

 None of these

5. An application iterates the hashtable by calling the ______ and ______
member functions

 hasNext() and hasDelete()

 hasNext() and getNextKey()

 Both 1 and 2

 None of these

6. The java.util package contains two classes that are designed to work with
hashtables. They are _______ and _________..

 Hashtable , HashMap class

 Hashtable,List

 Vector,List

 Vector,Hashtable

7. Data members of the Hashtable class stored in the private access
specifier

 private access specifier

 Public access specifier

 common access specifier

 None of these

8. _____ is the common programming technique used for hashing in all
hashing functions

 Cloning

 Bit Shifting

 Hashmapping

 Listing

VIJAYA COLLEGE Page 12�

9. If the depth of a tree is 3 levels, then what is the Size of the Tree?

 4

 2

 8

 6

10. deleteNode() function requires the _____ of the data element of the
node that is being removed

 reference

 value

 declaration

 variable

11. Value of the first linked list index is _______

 One

 Zero

 -1

 None of these

12. A linked list index is ____ that represents the position of a node in a
linked list.

 An Integer

 a variable

 a character

 a boolean

13. Why is the constructor of the QueueLinkedList class empty?

 because initialization of data members of the LinkedList class is performed by the
constructor of the LinkedList class.

VIJAYA COLLEGE Page 13�

 because initialization of data members of the LinkedList class is performed by the
destructor of the LinkedList class.

 because initialization of data members of the QueueLinkedList class is performed by the
constructor of the LinkedList class.

 because initialization of data members of the QueueLinkedList class is performed by the
destructor of the LinkedList class

14. _______ form of access is used to add and remove nodes from a queue

 LIFO,Last In First Out

 FIFO , First In First Out

 Both 1 and 2

 None of these

15. ______ form of access is used to add and remove nodes from a stack

 LIFO

 FIFO

 Both 1 and 2

 None of these

16. New nodes are added to the _____ of the queue.

 front

 back

 middle

 Both 1 and 2

17. A _______ is a data structure that organizes data similar to a line in the
supermarket, where the first one in line is the first one out.

 queue linked list

 stacks linked list

 both of them

VIJAYA COLLEGE Page 14�

 neither of them

18. In an array queue, data is stored in an _____ element.

 Node

 linked list

 array

 constructor

19. The pop() member function determines if the stack is empty by calling
the _____ member function

 removeback()

 isEmpty()

 removedfront()

 hasNext()

20. What happens when you push a new node onto a stack?

 the new node is placed at the front of the linked list.

 the new node is placed at the back of the linked list.

 the new node is placed at the middle of the linked list.

 No Changes happens

// Implementation Of BINARY TREE OPERATION (insertion & Deletion)

#include<conio.h>
#include<stdio.h>
#include<malloc.h>
#include<process.h>

struct node
{
 struct node *llink;
 struct node *rlink;
 int data;
};

VIJAYA COLLEGE Page 15�

void main()
{
 struct node *head,*t;
 int s,d;
 struct node* finsert();
 struct node* delenode(struct node*,int);
 void insert(struct node *);
 void inorder(struct node *);
 clrscr();
 head=NULL;
 do
 {
 printf("
1-Insertion");
 printf("
2-Deletion");
 printf("
3-Inorder");
 printf("
4-Exit");
 printf("
Enter Choice:");
 scanf("%d",&s);
 switch(s)
 {
 case 1://insertion
 if(head==NULL)
 {
 head=finsert();
 }
 else
 insert(head);
 break;

 case 2://Deletion
 if(head==NULL)
 printf("
Binary Tree Empty.......");
 else
 {
 printf("
Enter Data to delete:");
 scanf("%d",&d);
 if(head->llink==NULL && head->rlink==NULL && head->data==d)
 {
 t=head;

VIJAYA COLLEGE Page 16�

 head=NULL;
 free(t);
 }
 else
 head = delenode(head,d);
 }
 break;

 case 3://to display
 printf("
IN-ORDER:");
 if(head==NULL)
 printf("
Binary Tree Empty....");
 else
 inorder(head);
 break;

 case 4://exit
 exit(0);
 }
 }while(s<5 ||s>0);
 getch();
}

struct node* finsert()
{
 struct node * head;
 head=(struct node*)malloc(sizeof(struct node));
 printf("
Enter Data:");
 scanf("%d",&head->data);
 head->llink=NULL;
 head->rlink=NULL;
 return head;
}

void insert(struct node *head)
{
 struct node *t,*n;
 t=head;
 n=(struct node *)malloc(sizeof(struct node));
 printf("
Enter Data:");
 scanf("%d",&n->data);
 n->llink=NULL;

VIJAYA COLLEGE Page 17�

 n->rlink=NULL;
 while(t->llink!=NULL || t->rlink!=NULL)
 {
 if(t->llink!=NULL)
 if(n->data < t->data)
 t=t->llink;
 if(t->rlink!=NULL)
 if(n->data>=t->data)
 t=t->rlink;
 if((t->llink==NULL) && (n->data < t->data) && (n->data <
t->rlink->data))
 break;
 if((t->rlink==NULL) && (n->data >= t->data) && (n->data >
t->llink->data))
 break;
 }
 if((n->data < t->data) && (t->llink==NULL))
 t->llink=n;
 if((n->data > t->data) && (t->rlink==NULL))
 t->rlink=n;
}

void inorder(struct node * head)
{
 if(head!=NULL)
 {
 inorder(head->llink);
 printf("%d ",head->data);
 inorder(head->rlink);
 }
}

struct node * delenode(struct node *head,int d)
{
 int f=0,f1=0;
 struct node *p,*t,*t1,*x;
 t=head;

 //to search found or not
 while(t!=NULL)
 {
 if(t->data==d)
 {
 f=1;
 x=t;
 break;

VIJAYA COLLEGE Page 18�

 }
 if(t->data > d)
 {
 p=t;
 t=t->llink;
 }
 else if(t->data <= d)
 {
 p=t;
 t=t->rlink;
 }
 }
 if(f==0)
 {
 printf("
Given element not found.......");
 return head;
 }

 //Deleted node has no child
 if(x->llink==NULL && x->rlink==NULL)
 {
 if(p->rlink==x)
 p->rlink=NULL;
 else
 p->llink=NULL;
 free(x);
 return head;
 }

 //deleted node has 2 children
 if(x->llink!=NULL && x->rlink!=NULL)
 {
 p=x;
 t1=x->rlink;
 while(t1->llink!=NULL)
 {
 p=t1; f1=1;
 t1=t1->llink;
 }
 if(t1->llink==NULL && t1->rlink==NULL)
 {
 x->data=t1->data;
 if(f1==1)
 p->llink=t1->llink;
 if(f1==0)

VIJAYA COLLEGE Page 19�

 x->rlink=t1->rlink;
 free(t1);
 return head;
 }
 if(t1->rlink!=NULL)
 {
 x->data=t1->data;
 if(f1==1)
 p->llink=t1->rlink;
 if(f1==0)
 p->rlink=t1->rlink;
 free(t1);
 return head;
 }
 }

 //Deleted node has oniy right child
 if(x->llink==NULL && x->rlink!=NULL && x->data!=head->data)
 {
 if(p->llink==x)
 p->llink=x->rlink;
 else
 p->rlink=x->rlink;
 free(x);
 return head;
 }

 //Deleted node has oniy left child
 if(x->llink!=NULL && x->rlink==NULL && x->data!=head->data)
 {
 if(p->llink==x)
 p->llink=x->llink;
 else
 p->rlink=x->llink;
 free(x);
 return head;
 }
 if(x->llink!=NULL && x->rlink==NULL && x->data==head->data)
 {
 head=x->llink;
 free(p);
 return head;
 }
 if(x->llink==NULL && x->rlink!=NULL && x->data==head->data)
 {
 head=x->rlink;

VIJAYA COLLEGE Page 20�

VIJAYA COLLEGE Page 21�

 free(p);
 return head;
 }
}

	Introduction to Data Structures Using C
	Pointers and Indirection
	The memory cell at address 2003 contains a pointer the address of another cell, which can be seen in the above figure. Here the pointer is pointing to the memory cell 2005 which contains the letter C. This means that, we have two ways of accessing the letter C. We can refer to the memory cell which contains the value C directly or we can use the pointer to refer to it indirectly. The process of accessing the data through pointers is known as indirection. Using pointers, we can also create multiple levels of indirection.Linear Data Structures
	Ordered List: The Abstract View
	Array Implementation
	Pointer Implementation
	Pointer Implementation in the Stack
	Stack Operations:
	The Implementation View
	Structure of a binary node:

	Quiz for Data Structures Using C

